Advertisement

A Novel Application of Universal Background Models for Periocular Recognition

  • João C. MonteiroEmail author
  • Jaime S. Cardoso
Conference paper
  • 600 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)

Abstract

In recent years the focus of research in the fields of iris and face recognition has turned towards alternative traits to aid in the recognition process under less constrained acquisition scenarios. The present work assesses the potential of the periocular region as an alternative to both iris and face in such conditions. An automatic modeling of SIFT descriptors, using a GMM-based Universal Background Model method, is proposed. This framework is based on the Universal Background Model strategy, first proposed for speaker verification, extrapolated into an image-based application. Such approach allows a tight coupling between individual models and a robust likelihood-ratio decision step. The algorithm was tested on the UBIRIS.v2 and the MobBIO databases and presented state-of-the-art performance for a variety of experimental setups.

Keywords

Biometrics Iris segmentation Unconstrained environment Gradient flow Shortest closed path 

Notes

Acknowledgements

The first author would like to thank Fundação para a Ciência e Tecnologia (FCT) - Portugal the financial support for the PhD grant SFRH/BD/87392/ 2012.

References

  1. 1.
    Bakshi, S., Kumari, S., Raman, R., Sa, P.K.: Evaluation of periocular over face biometric: A case study. Procedia Eng. 38, 1628–1633 (2012)CrossRefGoogle Scholar
  2. 2.
    Joshi, A., Gangwar, A.K., Saquib, Z.: Person recognition based on fusion of iris and periocular biometrics. In: 2012 12th International Conference on Hybrid Intelligent Systems (HIS), pp. 57–62. IEEE (2012)Google Scholar
  3. 3.
    Kinnunen, T., Saastamoinen, J., Hautamaki, V., Vinni, M., Franti, P.: Comparing maximum a posteriori vector quantization and gaussian mixture models in speaker verification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4229–4232. IEEE (2009)Google Scholar
  4. 4.
    Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)CrossRefGoogle Scholar
  5. 5.
    Kumar, A., Chan, T.S.: Iris recognition using quaternionic sparse orientation code (qsoc). In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 59–64 (2012)Google Scholar
  6. 6.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  7. 7.
    Miller, P.E., Rawls, A.W., Pundlik, S.J., Woodard, D.L.: Personal identification using periocular skin texture. In: 2010 ACM Symposium on Applied Computing, pp. 1496–1500. ACM (2010)Google Scholar
  8. 8.
    Monteiro, J.C., Cardoso, J.S.: Periocular recognition under unconstrained settings with universal background models. In: Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS) (2015). http://www.inescporto.pt/~jsc/publications/conferences/2015JCMonteiroBIOSIGNALS.pdf
  9. 9.
    Moreno, J.C., Prasath, V., Proença, H.: Robust periocular recognition by fusing local to holistic sparse representations. In: Proceedings of the 6th International Conference on Security of Information and Networks, pp. 160–164. ACM (2013)Google Scholar
  10. 10.
    Padole, C.N., Proenca, H.: Periocular recognition: Analysis of performance degradation factors. In: 5th IAPR International Conference on Biometrics, pp. 439–445 (2012)Google Scholar
  11. 11.
    Park, U., Jillela, R.R., Ross, A., Jain, A.K.: Periocular biometrics in the visible spectrum. IEEE Trans. Inform. Forensics Secur. 6(1), 96–106 (2011)CrossRefGoogle Scholar
  12. 12.
    Park, U., Ross, A., Jain, A.K.: Periocular biometrics in the visible spectrum: A feasibility study. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2009)Google Scholar
  13. 13.
    Povey, D., Chu, S.M., Varadarajan, B.: Universal background model based speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4561–4564 (2008)Google Scholar
  14. 14.
    Proença, H.: NICE:II: Noisy iris challenge evaluation - part ii (2009). http://nice2.di.ubi.pt/
  15. 15.
    Proença, H.: Non-cooperative iris recognition: Issues and trends. In: 19th European Signal Processing Conference, pp. 1–5 (2011)Google Scholar
  16. 16.
    Proença, H., Santos, G.: Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths. Comput. Vis. Image Underst. 116(2), 167–178 (2012)CrossRefGoogle Scholar
  17. 17.
    Proença, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The ubiris.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)CrossRefGoogle Scholar
  18. 18.
    Reynolds, D.: Gaussian mixture models. In: Encyclopedia of Biometric Recognition, pp. 12–17 (2008)Google Scholar
  19. 19.
    Reynolds, D., Quatieri, T., Dunn, R.: Speaker verification using adapted gaussian mixture models. Digital Sign. Proces. 10(1), 19–41 (2000)CrossRefGoogle Scholar
  20. 20.
    Reynolds, D.A.: An overview of automatic speaker recognition technology. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 4, pp. IV-4072. IEEE (2002)Google Scholar
  21. 21.
    Ross, A., Jillela, R., Smereka, J.M., Boddeti, V.N., Kumar, B.V., Barnard, R., Hu, X., Pauca, P., Plemmons, R.: Matching highly non-ideal ocular images: An information fusion approach. In: 2012 5th IAPR International Conference on Biometrics (ICB), pp. 446–453. IEEE (2012)Google Scholar
  22. 22.
    Ross, A., Rattani, A., Tistarelli, M.: Exploiting the doddington zoo effect in biometric fusion. In: IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, 2009. BTAS 2009, pp. 1–7. IEEE (2009)Google Scholar
  23. 23.
    Santos, G., Proença, H.: Periocular biometrics: An emerging technology for unconstrained scenarios. In: 2013 IEEE Workshop on Computational Intelligence in Biometrics and Identity Management (CIBIM), pp. 14–21. IEEE (2013)Google Scholar
  24. 24.
    Sequeira, A.F., Monteiro, J.C., Rebelo, A., Oliveira, H.P.: MobBIO: a multimodal database captured with a portable handheld device. In: Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP) (2014)Google Scholar
  25. 25.
    Shinoda, K., Inoue, N.: Reusing speech techniques for video semantic indexing [applications corner]. IEEE Sign. Proces. Mag. 30(2), 118–122 (2013)CrossRefGoogle Scholar
  26. 26.
    Tan, C.W., Kumar, A.: Towards online iris and periocular recognition under relaxed imaging constraints. IEEE Trans. Image Proces. 22(10), 3751–3765 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Tan, T., Zhang, X., Sun, Z., Zhang, H.: Noisy iris image matching by using multiple cues. Pattern Recogn. Lett. 33, 970–977 (2011)CrossRefGoogle Scholar
  28. 28.
    Woodard, D.L., Pundlik, S.J., Lyle, J.R., Miller, P.E.: Periocular region appearance cues for biometric identification. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 162–169 (2010)Google Scholar
  29. 29.
    Xiong, Z., Zheng, T., Song, Z., Soong, F., Wu, W.: A tree-based kernel selection approach to efficient gaussian mixture model-universal background model based speaker identification. Speech Commun. 48(10), 1273–1282 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.INESC TEC and Faculdade de EngenhariaUniversidade do Porto Campus da FEUPPortoPortugal

Personalised recommendations