Analysis of Eye Movements with Eyetrace

  • Thomas C. KüblerEmail author
  • Katrin Sippel
  • Wolfgang Fuhl
  • Guilherme Schievelbein
  • Johanna Aufreiter
  • Raphael Rosenberg
  • Wolfgang Rosenstiel
  • Enkelejda Kasneci
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)


In the time of affordable and comfortable video-based eye tracking, the need for analysis software becomes more and more important. We introduce Eyetrace, a new software developed for the analysis of eye-tracking data during static image viewing. The aim of the software is to provide a platform for eye-tracking data analysis which works with different eye trackers, offering thus the possibility to compare results beyond the specific characteristics of the hardware devices. Furthermore, by integrating various state-of-the-art and new developed algorithms for analysis and visualization of eye-tracking data, the influence of different analysis steps and parameter choices on typical eye-tracking measures is totally transparent to the user. Eyetrace integrates several algorithms to identify fixations and saccades, and to cluster them. Well-established algorithms can be used side-by-side with bleeding-edge approaches with a continuous visualization. Eyetrace can be downloaded at and we encourage its use for exploratory data analysis and education.


Gaussian Mixture Model Fixation Duration Saccade Length Fixation Filter Fixation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank the department of art history at the university of Vienna for the inspiring collaboration. The project was partly financed by the the WWTF (Project CS11-023 to Helmut Leder and Raphael Rosenberg).


  1. 1.
    Brinkmann, H., Commare, L., Leder, H., Rosenberg, R.: Abstract art as a universal language? Leonardo 47(3), 256–257 (2014)CrossRefGoogle Scholar
  2. 2.
    Klein, C., Betz, J., Hirschbuehl, M., Fuchs, C., Schmiedtová, B., Engelbrecht, M., Mueller-Paul, J., Rosenberg, R.: Describing art-an interdisciplinary approach to the effects of speaking on gaze movements during the beholding of paintings. PloS one 9, e102439 (2014)CrossRefGoogle Scholar
  3. 3.
    Rosenberg, R., Messen, B.: Vorschläge für eine empirische Bildwissenschaft. Jahrbuch der Bayerischen Akademie der Schönen Künste 27, 71–86 (2014)Google Scholar
  4. 4.
    Tafaj, E., Kübler, T. C., Peter, J., Rosenstiel, W., Bogdan, M., Schiefer, U.: Vishnoo: an open-source software for vision research. In: 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)Google Scholar
  5. 5.
    Blignaut, P.: Fixation identification: the optimum threshold for a dispersion algorithm. Atten. Percept. Psychophys. 71, 881–895 (2009)CrossRefGoogle Scholar
  6. 6.
    Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research and Applications, pp. 71–78. ACM (2000)Google Scholar
  7. 7.
    Tafaj, E., Kasneci, G., Rosenstiel, W., Bogdan, M.: Bayesian online clustering of eye movement data. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 285–288. ACM (2012)Google Scholar
  8. 8.
    Kasneci, E.: Towards the automated recognition of assistance need for drivers with impaired visual field. Ph.D. thesis, University of Tübingen, Wilhelmstr. 32, 72074 Tübingen (2013)Google Scholar
  9. 9.
    Kasneci, E., Kasneci, G., Kübler, T. C., Rosenstiel, W.: The applicability of probabilistic methods to the online recognition of fixations and saccades in dynamic scenes. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 323–326. ACM (2014)Google Scholar
  10. 10.
    Kasneci, E., Kasneci, G., Kübler, T.C., Rosenstiel, W.: Online recognition of fixations, saccades, and smooth pursuits for automated analysis of traffic hazard perception. In: Koprinkova-Hristova, P., Mladenov, V., Kasabov, N. (eds.) Artificial Neural Networks. SSBN, vol. 4, pp. 411–434. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Santella, A., DeCarlo, D.: Robust clustering of eye movement recordings for quantification of visual interest. In: Proceedings of the Eye Tracking Research and Applications Symposium on Eye Tracking Research and Applications - ETRA’2004, pp. 27–34 (2004)Google Scholar
  12. 12.
    Pernice, K., Nielsen, J.: How to conduct eyetracking studies. Nielsen Norman Group (2009)Google Scholar
  13. 13.
    Eivazi, S., Bednarik, R., Tukiainen, M., von und zu Fraunberg, M., Leinonen, V., Jääskeläinen, J.E.: Gaze behaviour of expert and novice microneurosurgeons differs during observations of tumor removal recordings. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 377–380. ACM (2012)Google Scholar
  14. 14.
    Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., Papageorgiou, E.: Driving with binocular visual field loss? a study on a supervised on-road parcours with simultaneous eye and head tracking. PloS one 9, e87470 (2014)CrossRefGoogle Scholar
  15. 15.
    Tafaj, E., Kübler, T.C., Kasneci, G., Rosenstiel, W., Bogdan, M.: Online classification of eye tracking data for automated analysis of traffic hazard perception. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds.) ICANN 2013. LNCS, vol. 8131, pp. 442–450. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  16. 16.
    Kasneci, E., Sippel, K., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., Papageorgiou, E.: Homonymous visual field loss and its impact on visual exploration - a supermarket study. Translational Vision Science and Technology (2014, In Press)Google Scholar
  17. 17.
    Sippel, K., Kasneci, E., Aehling, K., Heister, M., Rosenstiel, W., Schiefer, U., Papageorgiou, E.: Binocular glaucomatous visual field loss and its impact on visual exploration - a supermarket study. PloS one 9, e106089 (2014)CrossRefGoogle Scholar
  18. 18.
    Kübler, T.C., Bukenberger, D.R., Ungewiss, J., Wörner, A., Rothe, C., Schiefer, U., Rosenstiel, W., Kasneci, E.: Towards automated comparison of eye-tracking recordings in dynamic scenes. In: EUVIP 2014 (2014)Google Scholar
  19. 19.
    Dewhurst, R., Nyström, M., Jarodzka, H., Foulsham, T., Johansson, R., Holmqvist, K.: It depends on how you look at it: scanpath comparison in multiple dimensions with multimatch, a vector-based approach. Behav. Res. Meth. 44, 1079–1100 (2012)CrossRefGoogle Scholar
  20. 20.
    Henson, D.B., Emuh, T.: Monitoring vigilance during perimetry by using pupillography. Invest. Ophthalmol. Vis. Sci. 51, 3540–3543 (2010)CrossRefGoogle Scholar
  21. 21.
    Di Stasi, L.L., McCamy, M.B., Macknik, S.L., Mankin, J.A., Hooft, N., Catena, A., Martinez-Conde, S.: Saccadic eye movement metrics reflect surgical residents’ fatigue. Ann. Surg. 259, 824–829 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas C. Kübler
    • 1
    • 3
    Email author
  • Katrin Sippel
    • 1
  • Wolfgang Fuhl
    • 1
  • Guilherme Schievelbein
    • 1
  • Johanna Aufreiter
    • 2
  • Raphael Rosenberg
    • 2
  • Wolfgang Rosenstiel
    • 1
  • Enkelejda Kasneci
    • 1
  1. 1.Computer Engineering DepartmentUniversity of TübingenTübingenGermany
  2. 2.Department of Art HistoryUniversity of ViennaViennaAustria
  3. 3.Study Course Ophthalmic Optics/AudiologyUniversity of Applied Sciences AalenAalenGermany

Personalised recommendations