Crutchfield Information Metric: A Valid Tool for Quality Control of Multiparametric MRI Data?

  • Jens KleesiekEmail author
  • Armin Biller
  • Andreas J. Bartsch
  • Kai Ueltzhöffer
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 574)


We propose an information theoretic framework to automatically infer the physical relationship and asses the quality of multiparametric MRI sequences. The method is based on the Crutchfield information metric. This distance measure can be computed solely based on the voxel intensities. In a series of experiments we proof its usefulness. First, we show that given multiparametric MRI data sets it is possible to discover the physical relationship w.r.t. the acquisition parameters of the individual sequences. Next, we demonstrate that this relationship can be employed to perform a quality check of a large (\(N=216\)) data set by identifying faulty components, e.g. due to motion artifacts. Finally, we use a multidirectional diffusion weighted data set to confirm that the approach is fine grained enough to even detect small differences of diffusion vectors as well as the direction of the phase encoding of an echo planar imaging (EPI) sequence. Future work aims at transferring the preliminary results of these promising experiments into clinical routine and at standardizing MRI protocols for large scale clinical trials.


Multiparametric MRI Crutchfield information metric MRI quality control Multidirectional diffusion weighted imaging 



Thanks to the anonymous reviewer who suggested the experiment with multiple diffusion directions. This work was supported by a postdoctoral fellowship from the Medical Faculty of the University of Heidelberg.


  1. 1.
    3D Slicer v4.3.
  2. 2.
    Cornfeld, D., Sprenkle, P.: Multiparametric MRI: standardizations needed. Oncol. (Williston Park) 27(4), 277–280 (2013)Google Scholar
  3. 3.
    Crutchfield, J.: Information and its metric. In: Lam, L., Morris, H.C. (eds.) Nonlinear Structures in Physical Systems. Woodward Conference. Springer, New York (1990)Google Scholar
  4. 4.
    Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Gunther, M., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain fmri and fast diffusion imaging. PLoS One 5(12), e15710 (2010)CrossRefGoogle Scholar
  5. 5.
    FMRIB’s software Library FSL v5.0.
  6. 6.
  7. 7.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), pp. 11–15. Pasadena, CA USA, August 2008Google Scholar
  8. 8.
    Johnson, H., Harris, G., Williams, K.: BRAINSFit: mutual information registrations of whole-brain 3D images, using the insight toolkit. The Insight J., October 2007.
  9. 9.
    Jones, D.K., Horsfield, M.A., Simmons, A.: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn. Reson. Med. 42(3), 515–525 (1999)CrossRefGoogle Scholar
  10. 10.
    Kaplan, F., Hafner, V.V.: Information-theoretic framework for unsupervised activity classification. Adv. Robot. 20(10), 1087–1103 (2006). CrossRefGoogle Scholar
  11. 11.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J Med. Internet Res. 15(11), e245 (2013)CrossRefGoogle Scholar
  12. 12.
    Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soci. 7(1), 48–50 (1956). zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kullback, S.: Information Theory and Statistics. Dover, New York (1968)Google Scholar
  14. 14.
    Olsson, L.A., Nehaniv, C.L., Polani, D.: From unknown sensors and actuators to actions grounded in sensorimotor perceptions. Connect. Sci. 18(2), 121–144 (2006). CrossRefGoogle Scholar
  15. 15.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Python v2.7.6.
  17. 17.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Sci. 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  18. 18.
    Shannon, C., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Chicago (1949)zbMATHGoogle Scholar
  19. 19.
    Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)CrossRefGoogle Scholar
  20. 20.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Sci. 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  21. 21.
    Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2(12), 474–484 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jens Kleesiek
    • 1
    • 2
    • 3
    Email author
  • Armin Biller
    • 1
    • 3
  • Andreas J. Bartsch
    • 1
  • Kai Ueltzhöffer
    • 1
  1. 1.Division of NeuroradiologyHeidelberg University HospitalHeidelbergGermany
  2. 2.HCI/IWRHeidelberg UniversityHeidelbergGermany
  3. 3.Division of RadiologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations