Advertisement

Opportunistic Cooperative Relaying with Backoff-Based Contention

  • Wei Song
  • Peijian Ju
  • A-Long Jin
Chapter
  • 358 Downloads
Part of the Wireless Networks book series (WN)

Abstract

In this chapter, we focus on an opportunistic relaying scenario and develop two distributed cooperation strategies. Both adopt a backoff-based inter-group coordination, while the intra-group contention is based on either the forwarding probability or backoff timer. In particular, we employ stochastic geometry to address the impact of spatial distribution of relays. Considering a Poisson point process for random relays, we derive the probability distributions of the average received signal-to-noise ratio (SNR) and transmission success probability of potential relays. Making use of such statistics and location information, each relay can independently determine its contention parameters such as a backoff time and/or a forwarding probability. We analytically evaluate the relaying performance and validate the accuracy with simulations. The results demonstrate the improvement over a pure probabilistic scheme and the gap to the upper bound of a centralized scheme with the pre-selected best relay.

References

  1. 1.
    Atapattu, S., Jing, Y., Jiang, H., Tellambura, C.: Relay selection schemes and performance analysis approximations for two-way networks. IEEE Trans. Wirel. Commun. 61 (3), 987–998 (2013)CrossRefGoogle Scholar
  2. 2.
    Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE J. Sel. Areas Commun. 24 (3), 659–672 (2006)CrossRefGoogle Scholar
  3. 3.
    Carofiglio, G., Chiasserini, C., Garetto, M., Leonardi, E.: Route stability in MANETs under the random direction mobility model. IEEE Trans. Mobile Comput. 8 (9), 1167–1179 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Gokeda, G., Yu, Y.: Introduction to Direction-of-Arrival Estimation. Artech House, Boston (2010)Google Scholar
  5. 5.
    Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M.: Unsaturated throughput analysis of IEEE 802.11 in presence of non ideal transmission channel and capture effects. IEEE Trans. Wirel. Commun. 7 (4), 1276–1286 (2008)Google Scholar
  6. 6.
    Daneshgaran, F., Laddomada, M., Mesiti, F., Mondin, M., Zanolo, M.: Saturation throughput analysis of IEEE 802.11 in the presence of non ideal transmission channel and capture effects. IEEE Trans. Commun. 56 (7), 1178–1188 (2008)Google Scholar
  7. 7.
    Hao, Y., Tang, J., Cheng, Y.: Secure cooperative data downloading in vehicular ad hoc networks. IEEE J. Sel. Areas Commun. 31 (9), 132–141 (2013)CrossRefGoogle Scholar
  8. 8.
    Hunter, J.K.: Measure Theory. Department of Mathematics, University of California, Davis. https://www.math.ucdavis.edu/~hunter/measure_theory/measure_theory.html (2011)
  9. 9.
    Jin, A., Song, W., Ju, P., Zhou, D.: Energy-aware cooperation strategy with uncoordinated group relays for delay-sensitive services. IEEE Trans. Veh. Technol. 63 (5), 2104–2114 (2014)CrossRefGoogle Scholar
  10. 10.
    Ju, P., Song, W., Zhou, D.: An enhanced cooperative MAC protocol based on perceptron training. In: Proceedings of the IEEE WCNC, Shanghai (2013)CrossRefGoogle Scholar
  11. 11.
    Ju, P., Song, W., Zhou, D.: Survey on cooperative medium access control protocols. IET Commun. 7 (9), 893–902 (2013)CrossRefGoogle Scholar
  12. 12.
    Jukić, D., Scitovski, R.: The existence of optimal parameters of the generalized logistic function. Appl. Math. Comput. 77 (2–3), 281–294 (1996)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S.S.: CoopMAC: a cooperative MAC for wireless LANs. IEEE J. Sel. Areas Commun. 25 (2), 340–354 (2007)CrossRefGoogle Scholar
  14. 14.
    Mao, G., Fidan, B., Anderson, B.: Wireless sensor network localization techniques. Comput. Netw. 51, 2529–2553 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    MathWorks: MATLAB R. http://www.mathworks.com (2013)
  16. 16.
    Ribeiro, A., Sidiropoulos, N.D., Giannakis, G.B.: Optimal distributed stochastic routing algorithms for wireless multihop networks. IEEE Trans. Wirel. Commun. 7 (11), 4261–4272 (2008)CrossRefGoogle Scholar
  17. 17.
    Shan, H., Cheng, H., Zhuang, W.: Cross-layer cooperative MAC protocol in distributed wireless networks. IEEE Trans. Wirel. Commun. 10 (8), 2603–2615 (2011)CrossRefGoogle Scholar
  18. 18.
    Song, W., Ju, P., Jin, A., Cheng, Y.: Distributed opportunistic two-hop relaying with backoff-based contention among spatially random relays. IEEE Trans. Veh. Technol. 64 (5), 2023–2036 (2015)CrossRefGoogle Scholar
  19. 19.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and its Applications, 2nd edn. John Wiley and Sons, Chichester (1996)zbMATHGoogle Scholar
  20. 20.
    Wang, L.C., Chen, A., Huang, S.Y.: A cross-layer investigation for the throughput performance of CSMA/CA-based WLANs with directional antennas and capture effect. IEEE Trans. Veh. Technol. 56 (5), 2756–2766 (2007)CrossRefGoogle Scholar
  21. 21.
    Xiong, L., Libman, L., Mao, G.: Uncoordinated cooperative communications in highly dynamic wireless networks. IEEE J. Sel. Areas Commun. 30 (2), 280–288 (2012)CrossRefGoogle Scholar
  22. 22.
    Zhai, C., Zhang, W., Mao, G.: Uncoordinated cooperative communications with spatially random relays. IEEE Trans. Wirel. Commun. 11 (9), 3126–3135 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhu, H., Cao, G.: rDCF: A relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Trans. Mobile Comput. 5 (9), 1201–1214 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zorzi, M., Rao, R.R.: Geographic random forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance. IEEE Trans. Mobile Comput. 2 (4), 349–365 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wei Song
    • 1
  • Peijian Ju
    • 2
  • A-Long Jin
    • 3
  1. 1.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada
  2. 2.IBM CanadaFrederictonCanada
  3. 3.University of WaterlooWaterlooCanada

Personalised recommendations