Advertisement

Diversity Relaying with Spatially Random Mobile Relays

  • Wei Song
  • Peijian Ju
  • A-Long Jin
Chapter
  • 354 Downloads
Part of the Wireless Networks book series (WN)

Abstract

In many studies on wireless cooperative diversity, it is often assumed that the number of helpers and their locations are deterministic or known a priori. In this chapter, we relax such assumptions and investigate a wireless diversity system with distributed cooperation and spatially random helpers subject to random direction (RD) mobility. To enable opportunistic relaying with multiple helpers, we consider an ALOHA-like medium access control (MAC) scheme and a timer-based random backoff scheme for multi-helper coordination. Particularly, we analyze the upper bound of combined signal-to-noise ratio (SNR) and unconditional success probability with multi-helper cooperation. We also provide numerical approximations for the delay of the two MAC schemes. To characterize the tradeoff between the success probability and delay, we further define a success/delay ratio, which can be maximized by adapting the intensity of selected helpers. The numerical and simulation results validated the analysis accuracy and demonstrated insightful observations.

References

  1. 1.
    Al-Sultan, S., Al-Doori, M.M., Al-Bayatti, A.H., Zedan, H.: A comprehensive survey on vehicular ad hoc network. J. Netw. Comput. Appl. 37, 380–392 (2014)CrossRefGoogle Scholar
  2. 2.
    Anghel, P.A., Kaveh, M.: Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Trans. Wirel. Commun. 3 (5), 1416–1421 (2004)CrossRefGoogle Scholar
  3. 3.
    Avestimehr, A.S., Tse, D.N.C.: Outage capacity of the fading relay channel in the low-SNR regime. IEEE Trans. Inf. Theory 53 (4), 1401–1415 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beaulieu, N.C., Hu, J.: A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett. 10 (12), 813–815 (2006)CrossRefGoogle Scholar
  5. 5.
    Davis, P.J., Rabinowits, P.: Methods of Numerical Integration, 2nd edn. Academic Press, Orlando (1984)Google Scholar
  6. 6.
    Gokturk, M.S., Ercetin, O., Gurbuz, O.: Throughput analysis of ALOHA with cooperative diversity. IEEE Commun. Lett. 12 (6), 468–470 (2008)CrossRefGoogle Scholar
  7. 7.
    Goldsmith, A.: Wireless Communications, 1st edn. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar
  8. 8.
    Haenggi, M., Andrews, J.G., Fran, Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27 (7), 1029–1046 (2009)Google Scholar
  9. 9.
    Hong, Y.W.P., Lin, C., Wang, S.: Exploiting cooperative advantages in slotted ALOHA random access networks. IEEE Trans. Inf. Theory 56 (8), 3828–3846 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ikki, S., Ahmed, M.H.: Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Commun. Lett. 11 (4), 334–336 (2007)CrossRefGoogle Scholar
  11. 11.
    Ju, P., Song, W., Jin, A., Zhou, D.: Performance analysis and enhancement for a cooperative wireless diversity network with spatially random mobile helpers. J. Netw. Comput. Appl. 46, 305–314 (2014)CrossRefGoogle Scholar
  12. 12.
    Ju, P., Song, W., Zhou, D.: Survey on cooperative medium access control protocols. IET Commun. 7 (9), 893–902 (2013)CrossRefGoogle Scholar
  13. 13.
    Kumar, D.S., Nagarajan, N.: Relay technologies and technical issues in IEEE 802.16j mobile multi-hop relay (MMR) networks. J. Netw. Comput. Appl. 36 (1), 91–102 (2013)Google Scholar
  14. 14.
    Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50 (12), 3062–3080 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, H.: Numerical Analysis, 1st edn. Huazhong University of Science and Technology Press, Wuhan (2003)Google Scholar
  16. 16.
    Nain, P., Towsley, D., Liu, B., Liu, Z.: Properties of random direction models. In: Proceedings of the IEEE INFOCOM, Miami, vol. 3, pp. 1897–1907 (2005)Google Scholar
  17. 17.
    Nechiporenko, T., Phan, K.T., Tellambura, C., Nguyen, H.H.: on the capacity of Rayleigh fading cooperative systems under adaptive transmission. IEEE Trans. Wirel. Commun. 8 (4), 1626–1631 (2009)Google Scholar
  18. 18.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity–part I: system description. IEEE Trans. Commun. 51 (11), 1927–1938 (2003)CrossRefGoogle Scholar
  19. 19.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity–part II: implementation aspects and performance analysis. IEEE Trans. Commun. 51 (11), 1939–1948 (2003)CrossRefGoogle Scholar
  20. 20.
    Shan, H., Wang, P., Zhuang, W., Wang, Z.: Cross-layer cooperative triple busy tone multiple access for wireless networks. In: Proceedings of the IEEE GLOBECOM, New Orleans (2008)CrossRefGoogle Scholar
  21. 21.
    Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. John Wiley & Sons, Chichester (1996)zbMATHGoogle Scholar
  22. 22.
    Tarng, H., Chuang, B., Liu, P.: A relay node deployment method for disconnected wireless sensor networks: applied in indoor environments. J. Netw. Comput. Appl. 32 (3), 652–659 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Wei Song
    • 1
  • Peijian Ju
    • 2
  • A-Long Jin
    • 3
  1. 1.Faculty of Computer ScienceUniversity of New BrunswickFrederictonCanada
  2. 2.IBM CanadaFrederictonCanada
  3. 3.University of WaterlooWaterlooCanada

Personalised recommendations