Amorphous and Nanocrystalline Glass-Coated Wires: Optimization of Soft Magnetic Properties

  • V. ZhukovaEmail author
  • M. Ipatov
  • A. Talaat
  • J. M. Blanco
  • Arcady Zhukov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)


In this chapter, we are reporting on engineering of soft magnetic properties, Giant magnetoimpedance (GMI) effect and domain wall dynamics of amorphous and nanocrsytalline glass-coated microwires. We overview the effect of magnetoelastic anisotropy that can be controlled through the strength of the internal stresses or the metallic alloy composition on the GMI effect and magnetic softness of glass-coated microwires. High GMI effect has been observed in as-prepared and annealed amorphous Co-rich microwires with vanishing magnetostriction coefficient.

Selection of the appropriate chemical composition and geometry allows achievement of high GMI effect.

Magnetic properties of amorphous microwires are strongly affected by the annealing. In Co-rich microwires after annealing rectangular hysteresis loops and coexistence of GMI effect and fast domain wall propagation can be observed. Observed changes are discussed considering effect of annealing on the magnetostriction coefficient. Similarly in Fe-rich microwires annealing affects the DW dynamics.

Investigations of magnetic properties of Finemet-type Fe-Cu-Nb-Si-B microwires reveal that annealing considerably affects the hysteresis loops and GMI effect of this family of microwires. Magnetoelastic anisotropy affects soft magnetic properties of as-prepared FeCuNbSiB microwires. We observed magnetic softening and a considerable increasing of the GMI effect in Finemet-type FeCuNbSiB with nanocrystalline structure. After an adequate annealing of Finemet-type microwires we observed a GMI ratio of about 100 %. In Hitperm-like Fe38.5Co38.5B18Mo4Cu1 microwires rectangular hysteresis loops and fast domain wall dynamics have been observed. Developed magnetically soft thin wires with optimized GMI effect are suitable for magnetic sensors applications.


Domain Wall Soft Magnetic Property Soft Magnet Domain Wall Velocity Domain Wall Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zhukova, V., Ipatov, M., Zhukov, A.: Thin magnetically soft wires for magnetic microsensors. Sensors. 9, 9216–9240 (2009)CrossRefGoogle Scholar
  2. 2.
    Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)CrossRefGoogle Scholar
  3. 3.
    Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Nova Science Publishers, New York (2009)ISBN: 978-1-60741-770-5Google Scholar
  4. 4.
    Chiriac, H., Corodeanu, S., Lostun, M., Ababei, G., Óvári, T.-A.: Magnetic behavior of rapidly quenched submicron amorphous wires. J. Appl. Phys. 107, 09A301 (2010)CrossRefGoogle Scholar
  5. 5.
    Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333 (1997)CrossRefGoogle Scholar
  6. 6.
    Honkura, Y.: Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Harrison, E.P., Turney, G.L., Rowe, H.: Electrical properties of wires of high permeability. Nature. 135, 961 (1935)ADSCrossRefGoogle Scholar
  8. 8.
    Zhukov, A., Ipatov, M., Churyukanova, M., Kaloshkin, S., Zhukova, V.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586(Suppl. 1), S279–S286 (2014)CrossRefGoogle Scholar
  9. 9.
    Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Beach, R.S., Berkowitz, A.E.: Giant magnetic-field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64(26), 3652 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Varga, R., Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Supersonic domain wall in magnetic microwires. Phys. Rev. B. 76, 132406 (2007). doi:10.1103/Phys Rev B.76.132406Google Scholar
  12. 12.
    Ekstrom, P.A., Zhukov, A.: Spatial structure of the head-to-head propagating domain wall in glass-covered FeSiB microwire. J. Phys. D: Appl. Phys. 43, 205001 (2010). doi: 10.1088/0022-3727/43/20/205001 ADSCrossRefGoogle Scholar
  13. 13.
    Gudoshnikov, S.A., Grebenshchikov, Y.B., Ljubimov, B.Y., Palvanov, P.S., Usov, N.A., Ipatov, M., Zhukov, A., Gonzalez, J.: Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Status Solidi A. 206(4), 613 (2009). doi: 10.1002/pssa.200881254 ADSCrossRefGoogle Scholar
  14. 14.
    Hayashi, M., Thomas, L., Rettner, C., Moriya, R., Jiang, X., Parkin, S.: Dependence of Current and Field Driven Depinning of Domain Walls on Their Structure and Chirality in Permalloy Nanowires. Phys. Rev. Lett. 97, 207205 (2006). doi:10.1103/PhysRevLett. 97.207205Google Scholar
  15. 15.
    Faulkner, C.C., Allwood, D.A., Cowburn, R.P.: Tuning of biased domain wall depinning fields at Permalloy nanoconstrictions. J. Appl. Phys. 103, 073914 (2008). doi: 10.1063/1.2905318 ADSCrossRefGoogle Scholar
  16. 16.
    Larin, V.S., Torcunov, A.V., Zhukov, A., González, J., Vazquez, M., Panina, L.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1-2), 39–45 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Taylor, G.F.: Phys. Rev. 24, 6555–6560 (1924)Google Scholar
  18. 18.
    Ulitovski, A.V., Maianski, I.M., Avramenko, A.I.: Author’s Certification Patent No. 128,427, 3 Sept 1950Google Scholar
  19. 19.
    Wiesner, H., Schneider, J.: Structure transformation in Fe-based amorphous alloy. Phys. Status Solidi A. 32(2), 655–659 (1975)Google Scholar
  20. 20.
    Wiesner, H., Schneider, J., Gemperle, R.: Annealing effects on the magnetic properties of rapidly quenched transition metal alloys. Phys. Status Solidi A. 36(1), K59 (1976)ADSCrossRefGoogle Scholar
  21. 21.
    Gemperle, R., Kraus, L., Schneider, J.: Magnetization reversal of amorphous Fe80P10B10 microwires. Czech. J. Phys. B. 28, 1138 (1978)ADSCrossRefGoogle Scholar
  22. 22.
    Kraus, L., Schneider, J., Wiesner, H.: Ferromagnetic resonance in amorphous alloys prepared by rapid quenching from the melt. Czech. J. Phys. B. 26, 601 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    Kraus, L., Schneider, J.: Magnetostriction of Amorphous (Fe1-xNix)80P10B10 Alloys. Phys. Status Solidi A. 39, K161 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    Zhukov, A., Zhukova, V.: Magnetic Sensors Based on Thin Magnetically Soft Wires with Tuneable Magnetic Properties and its Applications. International Frequency Sensor Association (IFSA) Publishing, Ronda de Ramon Otero Pedrayo (2014). ISBN-10: 84-617-1866-6Google Scholar
  25. 25.
    Konno, Y., Mohri, K.: Magnetostriction measurements for amorphous wires. IEEE Trans. Magn. 25, 3623–3625 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    Zhukov, A., Churyukanova, M., Kaloshkin, S., Sudarchikova, V., Gudoshnikov, S., Ipatov, M., Talaat, A., Blanco, J.M., Zhukova, V.: Magnetostriction of Co-Fe-based amorphous soft magnetic microwires. J. Electron. Mater. 45, 226–234 (2015). doi: 10.1007/s11664-015-4011-2 ADSCrossRefGoogle Scholar
  27. 27.
    Zhukov, A., Zhukova, V., Blanco, J.M., Cobeño, A.F., Vazquez, M., Gonzalez, J.: Magnetostriction in glass-coated magnetic microwires. J. Magn. Magn. Mater. 258-259, 151–157 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Yoshizawa, Y., Yamauchi, K.: Fe-based soft magnetic alloy composed of ultrafinegrain structure. Mater. Trans. JIM. 31, 307–314 (1990)CrossRefGoogle Scholar
  29. 29.
    Herzer, G.: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26, 1397–1402 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44, 291–433 (1999)CrossRefGoogle Scholar
  31. 31.
    Herzer, G.: Anisotropies in soft magnetic nanocrystalline alloys. J. Magn. Magn. Mater. 294, 99–106 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Zhukova, V., Cobeño, A.F., Zhukov, A., Blanco, J.M., Larin V. and Gonzalez J.: Coercivity of glass-coated Fe73.4-xCu1Nb3.1Si13.4+xB9.1 (0≤x≤1.6) microwires. Nanostruct. Mater. 11(8), 1319–1327 (1999)Google Scholar
  33. 33.
    Dudek, C., Adenot-Engelvin, A.L., Bertin, F., Acher, O.: J. Non-Cryst. Solids. 353, 925 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    Zhukov, A.P., Talaat, A., Ipatov, M., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., Zhukova, V.: Effect of nanocrystallization on magnetic properties and GMI effect of microwires. IEEE Trans. Magn. 50(6), 2501905 (2014)Google Scholar
  35. 35.
    Talaat, A., Zhukova, V., Ipatov, M., del Val, J.J., Gonzalez-Legarreta, L., Hernando, B., Blanco, J.M., Zhukov, A.: Effect of nanocrystallization on giant magnetoimpedance effect of Fe based microwires. Intermetallics. 51, 59–63 (2014)CrossRefGoogle Scholar
  36. 36.
    Talaat, A., Zhukova, V., Ipatov, M., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., del Val, J.J., Gonzalez, J., Zhukov, A.: Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization. J. Appl. Phys. 115, 17A313 (2014)CrossRefGoogle Scholar
  37. 37.
    Chiriac, H., Ovari, T.A., Marinescu, C.S.: Giant magneto-impedance effect in nanocrystalline glass-covered wires. J. Appl. Phys. 83, 6584 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    Vázquez, M., Zhukov, A.: Magnetic properties of glass coated amorphous and nanocrystalline microwires. J. Magn. Magn. Mater. 160, 223–228 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Usov, N.A., Antonov, A.S., Lagar`kov, A.N.: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    Pirota, K.R., Kraus, L., Chiriac, H., Knobel, M.: Magnetic properties and GMI in a CoFeSiB glass-covered microwire. J. Magn. Magn. Mater. 21, L243–L247 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magneto-impedance in Co-rich amorphous microwires. IEEE Trans. Magn. 38(5), 3090–3092 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Velázquez, J., Vazquez, M., Zhukov, A.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11, 2499–2505 (1996)ADSCrossRefGoogle Scholar
  43. 43.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33, 1161–1168 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    Chiriac, H., Ovari, T.-A., Zhukov, A.: Magnetoelastic anisotropy of amorphous microwires. J. Magn. Magn. Mater. 254-255, 469–471 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    Zhukov, A., Ipatov, M., Zhukova, V.: Amorphous microwires with enhanced magnetic softness and GMI characteristics. EPJ Web Conf. 29, 00052 (2012)CrossRefGoogle Scholar
  46. 46.
    Zhukov, A., Blanco, J.M., Ipatov, M., et al.: Manipulation of domain wall dynamics in amorphous microwires through the magnetoelastic anisotropy. Nanoscale Res. Lett. 7, 223 (2012). doi: 10.1186/1556-276X-7-223 ADSCrossRefGoogle Scholar
  47. 47.
    Zhukov, A.P., Vázquez, M., Velázquez, J., et al.: The remagnetization process of thin and ultrathin Fe-rich amorphous wires. J. Magn. Magn. Mater. 151, 132–138 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    Aragoneses, P., Blanco, J.M., Dominguez, L., et al.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D: Appl. Phys. 31, 3040–3045 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    Aragoneses, P., Blanco, J.M., Cobeño, A.F., Dominguez, L., Gonzalez, J., Zhukov, A., Larin, V.: Stress dependence of the switching field in Co-rich amorphous microwires. J. Magn. Magn. Mater. 196-197, 248–250 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    Zhukov, A., Ipatov, M., Blanco, J.M., Chizhik, A., Talaat, A., Zhukova, V.: Fast magnetization switching in amorphous microwires. Acta Phys. Pol., A. 126, 7–11 (2014)CrossRefGoogle Scholar
  51. 51.
    Garcia-Prieto, M.J., Pina, E., Zhukov, A.P., et al.: Glass coated Co-rich amorphous microwires with improved permeability. Sens. Actuators, A. 81(1-3), 227–231 (2000)CrossRefGoogle Scholar
  52. 52.
    Zhukov, A., Gonzalez, J., Blanco, J.M., et al.: Induced magnetic anisotropy in Co-Mn-Si-B amorphous microwires. J. Appl. Phys. 87, 1402–1408 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Zhukov, A., Vázquez, M., Velázquez, J., et al.: Frequency dependence of coercivity in rapidly quenched amorphous materials. J. Mater. Sci. Eng. A. 226-228, 753–756 (1997)CrossRefGoogle Scholar
  54. 54.
    Zhukov, A., Talaat, A., Ipatov, M., Blanco, J.M., Zhukova, V.: Tailoring of magnetic properties and GMI effect of Co-rich amorphous microwires by heat treatment. J. Alloys Compd. 615, 610–615 (2014)CrossRefGoogle Scholar
  55. 55.
    Zhukov, A., Talaat, A., Blanco, J.M., Ipatov, M., Zhukova, V.: Tuning of magnetic properties and GMI effect of Co-based amorphous microwires by annealing. J. Electron. Mater. 43(12), 4532–4539 (2014). doi: 10.1007/s11664-014-3348-2 ADSCrossRefGoogle Scholar
  56. 56.
    Zhukova, V., Ipatov, M., García, C., Gonzalez, J., Blanco, J.M., Zhukov, A.: Development of ultra-thin glass-coated amorphous microwires for high frequency magnetic sensors applications. Open Mater. Sci. J. 1, 1–12 (2007)CrossRefGoogle Scholar
  57. 57.
    Churyukanova, M., Semenkova, V., Kaloshkin, S., Shuvaeva, E., Gudoshnikov, S., Zhukova, V., Shchetinin, I., Zhukov, A.: Magnetostriction investigation of soft magnetic microwires. Phys. Status Solidi A. 213, 363–367 (2016). doi: 10.1002/pssa.201532552 CrossRefGoogle Scholar
  58. 58.
    Zhukov, A.: Design of magnetic properties of Fe-rich, glass-coated magnetic microwires for technical applications. Adv. Funct. Mater. 16(5), 675–680 (2006)CrossRefGoogle Scholar
  59. 59.
    Zhukova, V., Talaat, A., Ipatov, M., Del val, J.J., Blanco, J.M., Gonzalez-Legarreta, L., Hernando, B., Varga, R., Klein, P., Churyukanova, M., Zhukov, A.: Optimization of soft magnetic properties in nanocrystalline Fe-rich glass-coated microwires. JOM. 67, 2108 (2015). doi: 10.1007/s11837-015-1546-x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • V. Zhukova
    • 1
    • 2
    Email author
  • M. Ipatov
    • 1
    • 2
  • A. Talaat
    • 1
  • J. M. Blanco
    • 2
  • Arcady Zhukov
    • 1
    • 2
    • 3
  1. 1.Department of Material PhysicsBasque Country University, UPV/EHUSan SebastianSpain
  2. 2.Departamento de Física Aplicada, EUPDSBasque Country University, UPV/EHUSan SebastianSpain
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations