Melt Extracted Microwires

  • H. Wang
  • F. X. QinEmail author
  • H. X. Peng
  • J. F. Sun
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)


Amorphous microwires as a new category of advanced materials possess many excellent mechanical and magnetic properties, and have received considerable attention from both the research and industry community. Significant efforts have been devoted to the optimization of fabrication process, tailoring of mechanical and magnetic properties, sensor and microwave applications. To now, amorphous wires can be prepared by several methods such as glass coating (Taylor-wire technique), in-water quenching, and melt extraction technology (MET). Compared with others, the solidification rate of wires prepared by melt extraction is the highest, which endows the resultant wires many excellent mechanical and magnetic properties. To our best recollection, there is no dedicated monograph on melt extraction microwires yet. Therefore, in this chapter, we will focus on the melt-extracted amorphous microwires, detailing the fabrication process, wire formation mechanism, mechanical and magnetic properties, thus provide some technical base for its applications in sensor and multifunctional composites.


Residual Stress Shear Band Rayleigh Wave Magnetic Entropy Change Cold Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support from the Natural Science Foundation of China (NSFC 51371067, 51671171 and 51501162) and Zhejiang Provincial Natural Science Foundation of China (LY16E010001). HW also acknowledges useful discussions with Hongxian Shen, Jingshun Liu, Shuling Zhang, and Lunyong Zhang from the Harbin Institute of Technology, PR China.


  1. 1.
    Strom-Olsen, J.: Fine wires by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 178, 239–243 (1994)CrossRefGoogle Scholar
  2. 2.
    Vazquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D Appl. Phys. 29, 939–949 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Waseda, Y., Ueno, S., Hagiwara, M., Aust, K.: Formation and mechanical properties of Fe-and Co-base amorphous alloy wires produced by in-rotating-water spinning method. Prog. Mater. Sci. 34, 149–260 (1990)CrossRefGoogle Scholar
  4. 4.
    Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1996)CrossRefGoogle Scholar
  5. 5.
    Phan, M.-H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323–420 (2008)Google Scholar
  6. 6.
    Qin, F.X., Peng, H.-X.: Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183–259 (2013)CrossRefGoogle Scholar
  7. 7.
    Donald, I.W., Metcalfe, B.L.: Preparation, properties and applications of some glass-coated metal filaments prepared by the Taylor-wire process. J. Mater. Sci. 31, 1139–1149 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Recent research on magnetic properties of glass-coated microwires. J. Magn. Magn. Mater. 294, 182–192 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Ochin, P.: Shape memory thin round wires produced by the in rotating water melt-spinning technique. Acta Mater. 54, 1877–1885 (2006)CrossRefGoogle Scholar
  10. 10.
    Yamasaki, J., et al.: Magnetic properties of Co-Si-B amorphous wires prepared by quenching in-rotating water technique. IEEE Trans. J. Magn Jpn. 4, 360–367 (1989)CrossRefGoogle Scholar
  11. 11.
    Chiriac, H., Ovari, T.A., Vazquez, M., Hernando, A.: Magnetic hysteresis in glass-covered and water-quenched amorphous wires. J. Magn. Magn. Mater. 177–181, 205–206 (1998)CrossRefGoogle Scholar
  12. 12.
    Hagiwara, M., Inoue, A., Masumoto, T.: Mechanical properties of Fe-Si-B amorphous wires produced by in-rotating-water spinning method. Metall. Mater. Trans. A 13, 373–382 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    Maringer, R.E., Mobley, C.E.: Advances in melt extraction. Rapid Quenched Metals III. 446, 49–56 (1978)Google Scholar
  14. 14.
    Wang, H., Xing, D., Wang, X., Sun, J.: Fabrication and characterization of melt-extracted Co-based amorphous wires. Metall. Mater. Trans. A 42A, 1103–1108 (2010)ADSGoogle Scholar
  15. 15.
    Allahverdi, M., Drew, R.: Melt Extraction of Oxide Ceramic Wires. Montreal, McGill University (1991)Google Scholar
  16. 16.
    Inoue, A., Amiya, K., Yoshii, I., Kimura, H.M., Masumoto, T.: Production of Al-based amorphous alloy wires with high tensile strength by a melt extraction method. Mater. Trans. JIM 35, 485–488 (1994)CrossRefGoogle Scholar
  17. 17.
    Maringer, R.E., Mobley, C.E.: Casting of metallic filament and wire. J. Vac. Sci. Technol. 11, 1067 (1974)ADSCrossRefGoogle Scholar
  18. 18.
    Allahverdi, M., Drew, R.A.L., Rudkowska, P., Rudkowski, G., Strom-Olsen, J.O.: Amorphous CaO-Al2O3 wires by melt extraction. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. A207, 12–21 (1996)Google Scholar
  19. 19.
    Shen, T.D., Schwarz, R.B.: Lowering critical cooling rate for forming bulk metallic glass. Appl. Phys. Lett. 88, 091903 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Allahverdi, M., Drew, R., Strom–Olsen, J.: Wetting and melt extraction characteristics of ZrO2–Al2O3 based materials. J. Am. Ceram. Soc. 80, 2910–2916 (1997)Google Scholar
  21. 21.
    Maringer, R.E., Mobley, C.E.: Melt extraction of metallic filament and staple wire. AIChE Symp. Ser. 74, 16–19 (1978)Google Scholar
  22. 22.
    Engineering, M.: Fine metallic and ceramic wires by melt extraction. Techniques 1, 158–162 (1994)Google Scholar
  23. 23.
    Baik, N.I., Choi, Y., Kim, K.Y.: Fabrication of stainless steel and aluminum wires by PDME method. J. Mater. Process. Technol. 168, 62–67 (2005)CrossRefGoogle Scholar
  24. 24.
    Arkhangel'skij, V.M., Mitin, B.S.: Problems in wire producing by pendant drop melt extraction. Stal', 71–76 (2001)Google Scholar
  25. 25.
    Archangelsky, W., Prischepov, S.V., Vasiliev, V.A.: Adhesion interaction on melt extraction from pendant drop. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 304, 598–603 (2001)CrossRefGoogle Scholar
  26. 26.
    Strom-Olsen, J.: Fine fibres by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. A178, 239–243 (1994)CrossRefGoogle Scholar
  27. 27.
    Allahverdi, M., Drew, R.A.L., Strom-Olsen, J.: Melt extraction and properties of ZrO2 · Al2O3-based wires. Ceram. Eng. Sci. Proc. 16, 1015–1025 (1995)CrossRefGoogle Scholar
  28. 28.
    Rudkowski, P., Strom-Olsen, J.O., Rudkowska, G., Zaluska, A., Ciureanu, P.: Ultra fine, ultra soft metallic fibres. IEEE Trans. Magn. 31, 1224–1228 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    Allahverdi, M., Drew, R.A.L., StromOlsen, J.O.: Melt-extracted oxide ceramic fibres - The fundamentals. J. Mater. Sci. 31, 1035–1042 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Allahverdi, M., Drew, R.A.L., StromOlsen, J.O.: Wetting and melt extraction characteristics of ZrO2-Al2O3 based materials. J. Am. Ceram. Soc. 80, 2910–2916 (1997)CrossRefGoogle Scholar
  31. 31.
    Strom-olsen, J.O., Rudkowska, G., Rudkowski, P., Allahverdi, M., L. Drew, R.A. Fine metallic and ceramic fibres by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 179–180, 158–162 (1994)Google Scholar
  32. 32.
    Katsuya, A., Inoue, A., Masumoto, T.: Production and properties of amorphous alloy wires in Fe-B base system by a melt extraction method. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 226, 104–107 (1997)CrossRefGoogle Scholar
  33. 33.
    Zhang, T., Inoue, A.: A new method for producing amorphous alloy wires. Mater. Trans. JIM 41, 1463–1466 (2000)CrossRefGoogle Scholar
  34. 34.
    Inoue, A., Amiya, K., Katsuya, A., Masumoto, T.: Mechanical properties and thermal stability of Ti- and Al-based amorphous wires prepared by a melt extraction method. Mater. Trans. JIM 36, 858–865 (1995)CrossRefGoogle Scholar
  35. 35.
    Taha, M.A., El-Mahallawy, N.A., Abdel-Gaffar, M.F.: Geometry of melt-spun ribbons. Mater. Sci. Eng. A A134, 1162–1165 (1991)CrossRefGoogle Scholar
  36. 36.
    Tanner, B.R.I.: Note on the Rayleigh Problem for a Visco-Elastic Fluid. 13, 573–580 (1962)Google Scholar
  37. 37.
    Saasen, B.A., Tyvand, P.A.: Rayleigh-Taylor instability and Rayleigh-type waves on a Maxwell-fluid. J. Appl. Math. 41, 284–293 (1990)Google Scholar
  38. 38.
    Olson, B.J., Cook, A.W.: Rayleigh-Taylor shock waves. Phys. Fluids 19, 128108 (2007)ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Akihisa, I.: Preparation of amorphous Fe-Si-B and Co-Si-B alloy wires by a melt extraction method and their mechanical and magnetic properties. Mater. Trans. 36, 802–809 (1995)CrossRefGoogle Scholar
  40. 40.
    Allahverdi, M., Drew, R.A.L., Rudkowska, P., Rudkowski, G., StromOlsen, J.O.: Amorphous CaO · Al2O3 wires by melt extraction. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 207, 12–21 (1996)CrossRefGoogle Scholar
  41. 41.
    Kavesh, S.: Melt spinning of metal wires. AIChE Symp. Ser. 74, 1–15 (1978)Google Scholar
  42. 42.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory, Berlin:  Springer Verlag, (2000)Google Scholar
  43. 43.
    Schlichting, H.: Theory of Boundary Layer. Nauka, Moscow (1969)Google Scholar
  44. 44.
    Wang, H., Qin, F.X., Xing, D.W., et al.: Fabrication and characterization of nano/amorphous dualphase FINEMET microwires. Mater. Sci. Eng. B 178(20), 1483–1490 (2013)Google Scholar
  45. 45.
    Khandogina, E.N., Petelin, A.L.: Magnetic, mechanical properties and structure of amorphous glass coated microwires. J. Magn. Magn. Mater. 249, 55–59 (2002)Google Scholar
  46. 46.
    Qin, F.X., et al.: Mechanical and magnetocaloric properties of Gd-based amorphous microwires fabricated by melt-extraction. Acta Mater. 61, 1284–1293 (2013)CrossRefGoogle Scholar
  47. 47.
    Mukai, T., Nieh, T.G., Kawamura, Y., Inoue, A., Higashi, K.: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071–1077 (2002)CrossRefGoogle Scholar
  48. 48.
    Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)CrossRefGoogle Scholar
  49. 49.
    Wu, F.F., Zhang, Z.F., Mao, S.X.: Size-dependent shear fracture and global tensile plasticity of metallic glasses. Acta Mater. 57, 257–266 (2009)CrossRefGoogle Scholar
  50. 50.
    Wang, H., et al.: Relating residual stress and microstructure to mechanical and giant magneto-impedance properties in cold-drawn Co-based amorphous microwires. Acta Mater. 60, 5425–5436 (2012)CrossRefGoogle Scholar
  51. 51.
    Yi, J., et al.: Micro-and nanoscale metallic glassy wires. Adv. Eng. Mater. 12, 1117–1122Google Scholar
  52. 52.
    Nagase, T., Kinoshita, K., Nakano, T., Umakoshi, Y.: Fabrication of Ti-Zr binary metallic wire by Arc-Melt-Type melt-extraction method. Mater. Trans. 50, 872–878 (2009)CrossRefGoogle Scholar
  53. 53.
    Takayama, S.: Drawing of Pd77. 5Cu6Si16. 5 metallic glass wires. Mater. Sci. Eng. 38, 41–48 (1979)CrossRefGoogle Scholar
  54. 54.
    Masumoto, T., Ohnaka, I., Inoue, A., Hagiwara, M.: Production of Pd-Cu-Si amorphous wires by melt spinning method using rotating water. Scripta Metall 15, 293–296 (1981)CrossRefGoogle Scholar
  55. 55.
    Zberg, B., Arata, E.R., Uggowitzer, P.J., Lofler, J.F.: Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics. Acta Mater. 57, 3223–3231 (2009)CrossRefGoogle Scholar
  56. 56.
    Nagase, T., Ueda, M., Umakoshi, Y.: Preparation of Ni-Nb-based metallic glass wires by arc-melt-type melt-extraction method. J. Alloys Compd. 485, 304–312 (2009)CrossRefGoogle Scholar
  57. 57.
    Metals, O., Centre, D.: Production of Ni-Pd-Si and Ni-Pd-P amorphous wires and their mechanical and corrosion properties. Development 20, 97–104 (1985)Google Scholar
  58. 58.
    Wu, Y., et al.: Nonlinear tensile deformation behavior of small-sized metallic glasses. Scr. Mater. 61, 564–567 (2009)CrossRefGoogle Scholar
  59. 59.
    V´azquez, M.: Advanced magnetic microwires. In: Handbook of Magnetism and Advanced Magnetic Materials, vols 1–34. John Wiley & Sons, Ltd (2007)Google Scholar
  60. 60.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D Appl. Phys. 33, 1161 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Zhang, S.L., Sun, J.F., Xing, D.W., Qin, F.X., Peng, H.X.: Large GMI effect in Co-rich amorphous wire by tensile stress. J. Magn. Magn. Mater. 323, 3018–3021 (2011)ADSCrossRefGoogle Scholar
  62. 62.
    Antonov, A.S., et al.: Residual quenching stresses in amorphous ferromagnetic wires produced by an in-rotating-water spinning process. J. Phys. D Appl. Phys. 32, 1788–1794 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    Wu, Y., Wu, H.H., Hui, X.D., Chen, G.L., Lu, Z.P.: Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glasses. Acta Mater. 58, 2564–2576 (2010)CrossRefGoogle Scholar
  64. 64.
    Provenzano, V., Shapiro, A.J., Shull, R.D.: ErratumReduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature 435, 528–528 (2005)ADSCrossRefGoogle Scholar
  65. 65.
    Jeong, S.: AMR (Active Magnetic Regenerative) refrigeration for low temperature. Cryogenics 62, 193–201 (2014)ADSCrossRefGoogle Scholar
  66. 66.
    Dong, J.D., Yan, A.R., Liu, J.: Microstructure and magnetocaloric properties of melt-extracted La–Fe–Si microwires. J. Magn. Magn. Mater. 357, 73–76 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for Composites Science Innovation (InCSI), School of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations