Giant Magneto-Impedance Effect in Amorphous Ferromagnetic Microwire with a Weak Helical Anisotropy

  • N. A. UsovEmail author
  • S. A. Gudoshnikov
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)


The magnetostatic and electrodynamics properties of amorphous Co-rich microwire with a weak helical anisotropy has been studied taking into account the distribution of the residual quenching stresses over the microwire cross section. The components of the Giant Magneto- Impedance tensor have been obtained taking into account the necessary electromagnetic boundary conditions at the wire surface. A weak helical anisotropy of the microwire has been introduced through a small off-diagonal correction to the residual stress tensor. In this way an adequate description of the results of experimental measurements of the diagonal and off-diagonal components of the wire Giant Magneto- Impedance tensor at moderate frequencies has been obtained.


Applied Magnetic Field Effective Magnetic Field Amorphous Wire Circular Type Residual Stress Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISIS,” Contract No. K2-2015-018. S. Gudoshnikov wishes to acknowledge a support of the program of the Russian Ministry of Education and Science “Organization of scientific research,” Contract No. 2014/113.


  1. 1.
    Jiles, C.: Recent advances and future directions in magnetic materials. Acta Mater. 51(19), 5907–5939 (2003)CrossRefGoogle Scholar
  2. 2.
    Knobel, M., Vazquez, M., Kraus, L.: Giant magnetoimpedance. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 15, pp. 497–563. Elsevier, Amsterdam (2003)Google Scholar
  3. 3.
    Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53(2), 323–420 (2008)CrossRefGoogle Scholar
  4. 4.
    Larin, V.S., Torcunov, A.V., Zhukov, A.P., Gonzalez, J., Vazquez, M., Panina, L.V.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1-2), 39–45 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Chiriac, H., Ovari, T.A., Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B. 52(14), 10104–10113 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Velazquez, J., Vazquez, M., Zhukov, A.P.: Magnetoelastic anisotropy distribution in glass-coated microwires. J. Mater. Res. 11(10), 2499–2505 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic wires. J. Phys. D: Appl. Phys. 33, 1161–1168 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Panina, L.V., Mohri, K.: Magneto-impedance effect in amorphous wires. Appl. Phys. Lett. 65, 1189–1191 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Beach, R.S., Berkowitz, A.E.: Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett. 64, 3652–3654 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Panina, L.V., Mohri, K., Uchiyama, T., Noda, M., Bushida, K.: Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31(2), 1249–1260 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    Yelon, A., Ménard, D., Britel, M., Ciureanu, P.: Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl. Phys. Lett. 69, 3084–3086 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Vazquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D: Appl. Phys. 29, 939–949 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Antonov, A., Dykhne, A., Lagar’kov, A., Perov, N., Usov, N., Furmonova, T.: The features of GMI effect in amorphous wires at microwaves. Physica A. 241, 420–424 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Usov, N.A., Antonov, A.S., Lagar'kov, A.N.: Theory of giant magneto-impedance effect in amorphous wires with different types of magnetic anisotropy. J. Magn. Magn. Mater. 185, 159–173 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Kraus, L.: Theory of giant magneto-impedance in the planar conductor with uniaxial magnetic anisotropy. J. Magn. Magn. Mater. 195(3), 764–778 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Ménard, D., Yelon, A.: Theory of longitudinal magnetoimpedance in wires. J. Appl. Phys. 88, 379–393 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Vazquez, M.: Giant magneto-impedance in soft magnetic wires. J. Magn. Magn. Mater. 226, 693–699 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Makhnovskiy, D.P., Panina, L.V., Mapps, D.J.: Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential. Phys. Rev. B. 63, 144424–144441 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Zhukova, V., Chizhik, A., Zhukov, A., Torcunov, A., Larin, V., Gonzalez, J.: Optimization of giant magnetoimpedance in Сo-rich amorphous microwires. IEEE Trans. Magn. 38(5), 3090–3092 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    Sandacci, S., Makhnovskiy, D., Panina, L., Mohri, K., Honkura, Y.: Off-diagonal impedance in amorphous wires and its application to linear magnetic sensors. IEEE Trans. Magn. 40(6), 3505–3511 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Ciureanu, P., Melo, L.G.C., Seddaoui, D., Ménard, D., Yelon, A.: Physical models of magnetoimpedance. J. Appl. Phys. 102, 073908-1–073908-10 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Zhukova, V., Ipatov, M., Gonzalez, J., Blanco, J.M., Zhukov, A.: Studies of magnetic properties and giant magnetoimpedance effect in ultrathin magnetically soft amorphous microwires. J. Appl. Phys. 103, 07E714-1–07E714-3 (2008)CrossRefGoogle Scholar
  23. 23.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Zvezdin, A.: Low-field hysteresis in the magnetoimpedance of amorphous microwires. Phys. Rev. B. 81, 134421-1–134421-8 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J.: Magnetoimpedance sensitive to dc bias current in amorphous microwires. Appl. Phys. Lett. 97, 252507-1–252507-3 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Ipatov, M., Chizhik, A., Zhukova, V., Gonzalez, J., Zhukov, A.: Correlation of surface domain structure and magneto-impedance in amorphous microwires. J. Appl. Phys. 109, 113924–114100 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Mohri, K., Honkura, Y.: Amorphous wire and CMOS IC based magneto-impedance sensors—origin, topics, and future. Sens. Lett. 5, 267–270 (2007)CrossRefGoogle Scholar
  27. 27.
    Zhukova, V., Ipatov, M., Zhukov, A.: Thin magnetically soft wires for magnetic microsensors. Sensors. 9, 9216–9240 (2009)CrossRefGoogle Scholar
  28. 28.
    Gudoshnikov, S., Usov, N., Nozdrin, A., Ipatov, M., Zhukov, A., Zhukova, V.: Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire. Phys. Status Solidi A. 211, 980–985 (2014)CrossRefGoogle Scholar
  29. 29.
    Usov, N.A., Gudoshnikov, S.A.: Giant magneto-impedance effect in amorphous ferromagetic wire with a weak helical anisotropy: theory and experiment. J. Appl. Phys. 113, 243902-1–243902-10 (2013)ADSGoogle Scholar
  30. 30.
    Usov, N.A., Gudoshnikov, S.A.: Magnetization reversal process and peculiarities of giant magneto-impedance effect in amorphous ferromagnetic microwire with helical anisotropy. Phys. Status Solidi A. 211(5), 1055–1061 (2014)CrossRefGoogle Scholar
  31. 31.
    Usov, N., Antonov, A., Dykhne, A., Lagar'kov, A.: Stress dependence of the hysteresis loops of Co-rich amorphous wire. J. Phys.: Condens. Matter. 10, 2453–2463 (1998)ADSGoogle Scholar
  32. 32.
    Aranda, G.R., Usov, N.A., Zhukova, V., Zhukov, A., Gonzalez, J.: Hysteretic properties of Co-rich amorphous microwires: theory and experiment. Phys. Status Solidi A. 205, 1800–1804 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Cristensen, R.M.: Theory of Viscoelasticity: An Introduction. Academic, New York (1971)Google Scholar
  34. 34.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon Press, New York (1970)Google Scholar
  35. 35.
    Gudoshnikov, S., Churyukanova, M., Kaloshkin, S., Zhukov, A., Zhukova, V., Usov, N.A.: Investigation of the properties of Co-rich amorphous ferromagnetic microwires by means of small angle magnetization rotation method. J. Magn. Magn. Mater. 387, 53–57 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    Narita, K., Yamasaki, J., Fukunaga, H.: Measurement of saturation magnetostriction of a thin amorphous ribbon by means of small-angle magnetization rotation. IEEE Trans. Magn. 16(2), 435–439 (1980)ADSCrossRefGoogle Scholar
  37. 37.
    Zhukov, A., Zhukova, V., Blanco, J.M., Cobeno, A.F., Vazquez, M., Gonzalez, J.: Magnetostriction in glass-coated magnetic microwires. J. Magn. Magn. Mater. 258-259, 151–157 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    Brown Jr., W.F.: Micromagnetics. Interscience, New York (1963)zbMATHGoogle Scholar
  39. 39.
    Usov, N., Antonov, A., Dykhne, A., Lagar'kov, A.: Possible origin for the bamboo domain structure in Co-rich amorphous wire. J. Magn. Magn. Mater. 174, 127–132 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    Ipatov, M., Usov, N.A., Zhukov, A., Gonzalez, J.: Local nucleation fields of Fe-rich microwires and their dependence on applied stresses. Physica B. 403(2-3), 379–381 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Gudoshnikov, S.A., Grebenshchikov, Y.B., Ljubimov, B.Y., Palvanov, P.S., Usov, N.A., Ipatov, M., Zhukov, A., Gonzalez, J.: Local nucleation field and characteristic width of head to head domain wall in Fe-rich amorphous microwire. Phys. Status Solidi A. 206, 613–617 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Usov, N.A., Gudoshnikov, S.A.: Circular magnetization process in amorphous microwire with negative magnetostriction. J. Phys. D: Appl. Phys. 49, 16 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National University of Science and Technology “MISIS”MoscowRussia
  2. 2.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRANMoscowRussia

Personalised recommendations