Soft Ferromagnetic Microwires with Excellent Inductive Heating Properties for Clinical Hyperthermia Applications

  • Rupin Singh
  • Javier Alonso
  • Jagannath Devkota
  • Manh-Huong PhanEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 252)


Growing interest in the use of magnetic nanoparticles for biomedical applications has led researchers to investigate a multitude of treatment possibilities to use clinical hyperthermia for cancer therapy. Soft ferromagnetic amorphous glass-coated microwires have been shown to be easy to produce, control, and insulate for biocompatibility along with their outstanding magnetic properties (large saturation magnetization and large shape anisotropy). Our research provides the first exploration of the radio frequency alternating field responses of magnetically soft Co-rich glass-coated microwires for possible applications in clinical hyperthermia.


Soft ferromagnets Microwires Magnetic hyperthermia Biomedicine 



The research was supported by the College of Arts and Science—University of South Florida Research Grant (Magnetic and hyperthermia measurements). Javier Alonso acknowledges the financial support provided through a postdoctoral fellowship from Basque Government. We thank Professors Hariharan Srikanth and Pritish Mukherjee of the University of South Florida for their useful comments and discussions. Microfir TehnologiiIndustriale ( is acknowledged for providing the soft ferromagnetic glass-coated microwires for this study.


  1. 1.
    Alteri, R., Bertaut, T., Brooks, D., et al.: Cancer Facts & Figures 2015. American Cancer Society, Atlanta (2015)Google Scholar
  2. 2.
    Stewart, B., Wild, C.P.: World Cancer Report 2014. World Health Organization, Lyon (2014)Google Scholar
  3. 3.
    Ortega, D., Pankhurst, Q.A.: Magnetic hyperthermia. Nanoscience. 1, 60 (2013)CrossRefGoogle Scholar
  4. 4.
    Chertok, B., Moffat, B.A., David, A.E., et al.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 29, 487 (2008)CrossRefGoogle Scholar
  5. 5.
    Colombo, M., Carregal-Romero, S., Casula, M.F., et al.: Biological applications of magnetic nanoparticles. Chem. Soc. Rev. 41, 4306 (2012)CrossRefGoogle Scholar
  6. 6.
    Périgo, E.A., Hemery, G., Sandre, O., et al.: Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)CrossRefGoogle Scholar
  7. 7.
    Pankhurst, Q.A., Connolly, J., Jones, S.K., et al.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36, R167 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Skyes, E.A., Dai, Q., Tsoi, K.M., et al.: Nanoparticle exposure in animals can be visualized in the skin and analyzed via skin biopsy. Nat. Commun. 5, 3796 (2013)Google Scholar
  9. 9.
    Stauffer, P.R., Cetas, T.C., Flectcher, A.M., et al.: Observations on the use of ferromagnetic implants for inducing hyperthermia. IEEE Trans. Biomed. Eng. 31, 76 (1984)CrossRefGoogle Scholar
  10. 10.
    Zuchini, R., Tsai, H.W., Chen, C.Y., et al.: Electromagnetic thermotherapy using fine needles for hepatoma treatment. Eur. J. Surg. Oncol. 37, 604 (2011)CrossRefGoogle Scholar
  11. 11.
    Vázquez, M.: Soft magnetic wires. Physica B. 299, 302 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Zhukov, A., Zhukova, V.: Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure. Hauppauge, New York (2009)Google Scholar
  13. 13.
    Phan, M.H., Peng, H.X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53, 323 (2008)CrossRefGoogle Scholar
  14. 14.
    Hudak, R., Varga, R., Hudak, J., et al.: Influence of fixation on magnetic properties of glass-coated magnetic microwires for biomedical applications. IEEE Trans. Magn. 51, 5200104 (2015)CrossRefGoogle Scholar
  15. 15.
    Banobre-Lopez, M., Teijeiro, M., Rivas, J.: Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep. Prac. Oncol. Radiother. 18, 397 (2013)CrossRefGoogle Scholar
  16. 16.
    Jordan, A., Wust, P., Fahling, H., et al.: Inductive heating of ferrimagnetic particles and magnetic fluids—physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 9, 51 (1993)CrossRefGoogle Scholar
  17. 17.
    Gilchrist, R.K., Shorey, W.D., Hanselman, R.C., et al.: Effects of electromagnetic heating on internal viscera: a preliminary to the treatment of human tumors. Ann. Surg. 161, 890 (1965)CrossRefGoogle Scholar
  18. 18.
    Lucia, O.: Induction heating and its applications: past developments, current technology, and future challenges. IEEE Trans. Ind. Electron. 61, 2509 (2014)CrossRefGoogle Scholar
  19. 19.
    Figuerola, A., Di Corato, R., Manna, L., et al.: From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol. Res. 62, 126 (2010)CrossRefGoogle Scholar
  20. 20.
    Gómez-Polo, C., Larumbe, S., Pérez-Landazabal, J.I., et al.: Magnetic induction heating of FeCr nanocrystalline alloys. J. Magn. Magn. Mater. 324, 1897 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Gómez-Polo, C., Larumbe, S., Pérez-Landazabal, J.I., et al.: Analysis of heating effects (magnetic hyperthermia) in FeCrSiBCuNb amorphous and nanocrystalline wires. J. Appl. Phys. 111, 07A314 (2012)CrossRefGoogle Scholar
  22. 22.
    Qin, F.X., Peng, H.X.: Ferromagnetic microwires enabled multifunctional composite materials. Prog. Mater. Sci. 58, 183 (2013)CrossRefGoogle Scholar
  23. 23.
    Colosimo, P., Chen, A., Devkota, J., Srikanth, H., Phan, M.H., et al.: Sensing RF and microwave energy with fiber Bragg grating heating via soft ferromagnetic glass-coated microwires. Sens. Actuators A. 210, 25 (2014)CrossRefGoogle Scholar
  24. 24.
    Varga, R.: Magnetization processes in glass-coated microwires with positive magnetostriction. Acta Phys. Slov. 62, 411 (2012)Google Scholar
  25. 25.
    Ulitovsky, A.V.: Micro-technology in design of electric devices. Leningrad. 7, 6 (1951)Google Scholar
  26. 26.
    Chizhik, A., Zhukova, V.: Magneto-optical and magnetic studies of Co-rich glass-covered microwires. Phys. Res. Int. 2012, 690793 (2012)CrossRefGoogle Scholar
  27. 27.
    Kolhatkar, A.G., Jamison, A.C., Litvinov, D., et al.: Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14, 15977 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rupin Singh
    • 1
  • Javier Alonso
    • 1
    • 2
  • Jagannath Devkota
    • 1
  • Manh-Huong Phan
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA
  2. 2.BCMaterials Edificio No. 500Parque Tecnológico de VizcayaDerioSpain

Personalised recommendations