Advertisement

Theoretical Background

  • Jan-Hendrik WehnerEmail author
  • Dominic Jekel
  • Rubens Sampaio
  • Peter Hagedorn
Chapter
  • 391 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The equations of motion of a dynamical system in general are nonlinear. Since an analytic solution can only be found for some special cases, it is common practice to linearize these equations around a reference position, typically an equilibrium.

References

  1. 1.
    Seyranian, A.P., Mailybaev, A.A.: Multiparameter Stability Theory with Mechanical Applications. Series on Stability, Vibration, and Control of Systems, vol. 13. Series A. World Scientific, Singapore (2003)Google Scholar
  2. 2.
    Müller, P.C.: Stabilität und Matrizen: Matrizenverfahren in der Stabilitätstheorie linearer dynamischer Systeme. Ingenieurwissenschaftliche Bibliothek. Springer, Berlin, Heidelberg, New York (1977)zbMATHGoogle Scholar
  3. 3.
    Kuypers, F.: Klassische Mechanik, 10th edn. Wiley-VCH, Weinheim (2016)zbMATHGoogle Scholar
  4. 4.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. University Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Chicone, C.: Ordinary Differential Equations with Applications. Texts in Applied Mathematics, vol. 34, 2nd edn. Springer, New York (2006)Google Scholar
  6. 6.
    Spelsberg-Korspeter, G.: Eigenvalue optimization against brake squeal: symmetry, mathematical background and experiments. J. Sound Vib. 331(19), 4259–4268 (2012)CrossRefGoogle Scholar
  7. 7.
    Jekel, D., Clerkin, E., Hagedorn, P.: Robust damping in self-excited mechanical systems. Proc. Appl. Math. Mech. 16(1), 695–696 (2016)CrossRefGoogle Scholar
  8. 8.
    Müller, P.C., Schiehlen, W.O.: Lineare Schwingungen: Theoretische Behandlung von mehrfachen Schwingern. Akademische Verlagsgesellschaft, Wiesbaden (1976)zbMATHGoogle Scholar
  9. 9.
    Gasch, R., Knothe, K., Liebich, R.: Strukturdynamik: Diskrete Systeme und Kontinua, 2nd edn. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Arens, T., Hettlich, F., Karpfinger, C., Kockelkorn, U., Lichtenegger, K., Stachel, H.: Mathematik. Springer Spektrum, Berlin and Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hochlenert, D.: Selbsterregte Schwingungen in Scheibenbremsen: Mathematische Modellbildung und aktive Unterdrückung von Bremsenquietschen. Berichte aus dem Maschinenbau. Shaker, Aachen (2006)Google Scholar
  12. 12.
    Kimball, A.L., Lovell, D.E.: Internal friction in solids. Phys. Rev. 30(6), 948–959 (1927)Google Scholar
  13. 13.
    Mezger, T.G.: Das Rheologie Handbuch: Für Anwender von Rotations- und Oszillations-Rheometern. Farbe-und-Lack-Bibliothek, 5th edn. Vincentz, Hannover (2016)Google Scholar
  14. 14.
    Neumark, S.: Concept of Complex Stiffness Applied to Problems of Oscillations with Viscous and Hysteretic Damping. Technical Report 3269, Aeronautical Research Council, London (1962)Google Scholar
  15. 15.
    Bert, C.W.: Material damping. J. Sound Vib. 29(2), 129–153 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stevenson, J.D.: Structural damping values as a function of dynamic response stress and deformation levels. Nucl. Eng. Des. 60(2), 211–237 (1980)CrossRefGoogle Scholar
  17. 17.
    Crandall, S.H.: The role of damping in vibration theory. J. Sound Vib. 11(1), 3–18 (1970)CrossRefzbMATHGoogle Scholar
  18. 18.
    Woodhouse, J.: Linear damping models for structural vibration. J. Sound Vib. 215(3), 547–569 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale systems. Contemp. Math. 280, 193–220 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Qu, Z.-Q.: Model Order Reduction Techniques: With Applications in Finite Element Analysis. Springer, London (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Ouyang, H., Mottershead, J.E., Cartmell, M.P., Friswell, M.I.: Friction-induced parametric resonances in discs: effect of a negative friction-velocity relationship. J. Sound Vib. 209(2), 251–264 (1998)CrossRefGoogle Scholar
  22. 22.
    Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Schriftenreihe des Instituts für Technische Mechanik, vol. 8. Univ.-Verl. Karlsruhe, Karlsruhe (2008)Google Scholar
  23. 23.
    Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. Z. Angew. Math. Mech. 83(8), 524–534 (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Sinou, J.-J., Jézéquel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Euro. J. Mech. A Solids 26(1), 106–122 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21(6), 2374–2393 (2007)CrossRefGoogle Scholar
  26. 26.
    Sinou, J.-J.: Transient non-linear dynamic analysis of automotive disc brake squeal—on the need to consider both stability and non-linear analysis. Mech. Res. Commun. 37(1), 96–105 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Spelsberg-Korspeter, G., Hochlenert, D., Hagedorn, P.: Non-linear investigation of an asymmetric disk brake model. Proc. IMechE Part C: J. Mech. Eng. Sci. 225(10), 2325–2332 (2011)CrossRefzbMATHGoogle Scholar
  28. 28.
    Ouyang, H., Nack, W.V., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1(3/4), 207–231 (2005)CrossRefGoogle Scholar
  29. 29.
    Wagner, A.: Avoidance of brake squeal by a separation of the brake disc’s eigenfrequencies: a structural optimization problem. Forschungsbericht, vol. 31. Studienbereich Mechanik, Darmstadt (2013)Google Scholar
  30. 30.
    Spelsberg-Korspeter, G.: Breaking of symmetries for stabilization of rotating continua in frictional contact. J. Sound Vib. 322(4–5), 798–807 (2009)CrossRefGoogle Scholar
  31. 31.
    Schlagner, S., von Wagner, U.: Evaluation of automotive disk brake noise behavior using piezoceramic actuators and sensors. Proc. Appl. Math. Mech. 7(1), 4050031–4050032 (2007)CrossRefGoogle Scholar
  32. 32.
    Jekel, D., Hagedorn, P.: Stability of weakly damped MDGKN-systems: the role of velocity proportional terms. Z. Angew. Math. Mech. (1–8) (2017)Google Scholar
  33. 33.
    von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302(3), 527–539 (2007)CrossRefGoogle Scholar
  34. 34.
    Sinou, J.-J., Jézéquel, L.: On the stabilizing and destabilizing effects of damping in a non-conservative pin-disc system. Acta Mech. 199(1–4), 43–52 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Jan-Hendrik Wehner
    • 1
    Email author
  • Dominic Jekel
    • 2
  • Rubens Sampaio
    • 3
  • Peter Hagedorn
    • 2
  1. 1.WeinheimGermany
  2. 2.Dynamics and Vibrations GroupTechnical University of DarmstadtDarmstadtGermany
  3. 3.Department of Mechanical EngineeringPontifical Catholic University of RioRio de JaneiroBrazil

Personalised recommendations