Advertisement

Optimization of Finite Element Models of Disc Brakes

  • Jan-Hendrik WehnerEmail author
  • Dominic Jekel
  • Rubens Sampaio
  • Peter Hagedorn
Chapter
  • 400 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The assumptions made to derive the equations of motion in a FE environment are similar to those of the minimal model.

Keywords

Disc Brakes Minimal Model Structural Damping Factor Maximum Real Part Modal Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ingenieurgesellschaft für technische Software. PERMAS—Workshop: Dynamik II: Erweiterungen und spezielle Anwendungen. Stuttgart (2015)Google Scholar
  2. 2.
    Ingenieurgesellschaft für technische Software. PERMAS: User’s Reference Manual. Stuttgart (2014)Google Scholar
  3. 3.
    Natke, H.G.: Einführung in Theorie und Praxis der Zeitreihen- und Modalanalyse: Identifikation schwingungsfähiger elastomechanischer Systeme. Grundlagen und Fortschritte der Ingenieurwissenschaften, 3rd edn. Vieweg, Braunschweig (1992)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ingenieurgesellschaft für technische Software. PERMAS: Examples Manual. Stuttgart (2014)Google Scholar
  5. 5.
    Hochlenert, D.: Nonlinear stability analysis of a disk brake model. Nonlinear Dyn. 58(1–2), 63–73 (2009)CrossRefzbMATHGoogle Scholar
  6. 6.
    Beards, C.F.: Structural Vibration: Analysis and Damping. Arnold, London, Sidney, Auckland (1996)zbMATHGoogle Scholar
  7. 7.
    Grote, K.-H., Feldhusen, J. (eds.): Dubbel: Taschenbuch für den Maschinenbau, 24th edn. Springer Vieweg, Berlin, Heidelberg (2014)Google Scholar
  8. 8.
    Kruse, S., Tiedemann, M., Zeumer, B., Reuss, P., Hetzler, H., Hoffmann, N.: The influence of joints on friction induced vibration in brake squeal. J. Sound Vib. 340, 239–252 (2015)CrossRefGoogle Scholar
  9. 9.
    Möser, M., Kropp, W., Cremer, L.: Körperschall: Physikalische Grundlagen und technische Anwendungen, 3rd edn. Springer, Berlin, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Bickel, E.: Die Metallischen Werkstoffe des Maschinenbaues, 3rd edn. Springer, Berlin, Heidelberg (1961)CrossRefGoogle Scholar
  11. 11.
    Kollmann, F.G., Schösser, T.F., Angert, R.: Praktische Maschinenakustik. VDI. Springer, Berlin, Heidelberg, New York (2006)Google Scholar
  12. 12.
    Ungar, E.E., Zapfe, J.A.: Structural damping. In: Vér, I.L. (ed.) Noise and Vibration Control Engineering, pp. 579–609. Wiley, Hoboken (2006)Google Scholar
  13. 13.
    Müller, G., Groth C.: FEM für Praktiker—Band 1: Grundlagen: Basiswissen und Arbeitsbeispiele zur Finite-Element-Methode mit dem FE-Programm ANSYS Rev. 5.5, vol. 23 of Edition expertsoft, 7 edn. expert, Renningen (2002)Google Scholar
  14. 14.
    Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press, Oxford, New York (1968)Google Scholar
  15. 15.
    Niehues, K.K.: Identifikation linearer Dämpfungsmodelle für Werkzeug-maschinenstrukturen. Forschungsberichte IWB, vol. 318. Utz Herbert, München (2016)Google Scholar
  16. 16.
    Festjens, H., Gaël, C., Franck, R., Jean-Luc, D., Remy, L.: Effectiveness of multilayer viscoelastic insulators to prevent occurrences of brake squeal: a numerical study. Appl. Acoust. 73(11), 1121–1128 (2012)CrossRefGoogle Scholar
  17. 17.
    Kang, J.: Finite element modelling for the investigation of in-plane modes and damping shims in disc brake squeal. J. Sound Vib. 331(9), 2190–2202 (2012)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Jan-Hendrik Wehner
    • 1
    Email author
  • Dominic Jekel
    • 2
  • Rubens Sampaio
    • 3
  • Peter Hagedorn
    • 2
  1. 1.WeinheimGermany
  2. 2.Dynamics and Vibrations GroupTechnical University of DarmstadtDarmstadtGermany
  3. 3.Department of Mechanical EngineeringPontifical Catholic University of RioRio de JaneiroBrazil

Personalised recommendations