Advertisement

Multiscale Chemical Imaging of Complex Biological and Archaeological Materials

  • James C. WeaverEmail author
  • Admir Masic
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

Raman chemical imaging provides powerful and general means to chemically characterize biological and synthetic materials under complex experimental conditions. For biological materials, we describe several techniques for investigating in-vivo processes spanning size ranges from single cells to complex multicellular organisms. Because these experimental approaches are non-invasive, Raman chemical imaging allows monitoring of dynamic processes in living systems including, for example, the study of the early stages of bone formation. We also describe large-scale Raman-based imaging techniques, including approaches for analyzing samples exhibiting complex shapes and irregular heterogeneous surface topographies. We further demonstrate how correlative Raman-SEM/EDS approaches can be applied to collect complementary information from complex biological and archaeological samples regarding structural complexity, elemental composition, and short-range chemical bonding parameters.

Notes

Acknowledgements

We thank Prof. Lia Addadi, Prof. Steve Weiner, Dr. Damien Faivre, Dr. Mathieu Bennet, and Prof. Peter Fratzl for fruitful discussions. We thank Dr. Thomas Dieing for helping with TrueSurface data acquisition and processing and Dr. Karl Brommer for helpful suggestions. Part of this research was supported by a German Research Foundation (DFG) grant, within the framework of the SPP 1420.

References

  1. 1.
    O. Paris, B. Aichmayer, A. Al-Sawalmih, C. Li, S. Siegel, P. Fratzl, Adv. Eng. Mater. 13(8), 784 (2011)CrossRefGoogle Scholar
  2. 2.
    C. Riekel, F. Vollrath, Int. J. Biol. Macromol. 29(3), 203 (2001)CrossRefGoogle Scholar
  3. 3.
    M.P. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Biophys. J. 93(4), 1255 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    D. Mahoney, D. Vezie, R. Eby, W.W. Adams, D. Kaplan, in ACS Symposium Series (USA) (1994)Google Scholar
  5. 5.
    G. Melacini, A.M. Bonvin, M. Goodman, R. Boelens, R. Kaptein, J. Mol. Biol. 300(5), 1041 (2000)CrossRefGoogle Scholar
  6. 6.
    G. Otting, Prog. Nucl. Magn. Reson. Spectrosc. 31(2), 259 (1997)CrossRefGoogle Scholar
  7. 7.
    W.J. Landis, K.J. Hodgens, M.J. Song, J. Arena, S. Kiyonaga, M. Marko, C. Owen, B.F. McEwen, J. Struct. Biol. 117(1), 24 (1996)CrossRefGoogle Scholar
  8. 8.
    M. Kazanci, H. Wagner, N. Manjubala, H. Gupta, E. Paschalis, P. Roschger, P. Fratzl, Bone 41(3), 456 (2007)CrossRefGoogle Scholar
  9. 9.
    T. Lefèvre, M.E. Rousseau, M. Pézolet, Biophys. J. 92(8), 2885 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    C. Pellerin, M.E. Rousseau, M. Côté, M. Pézolet, Macromol. Symp. (Wiley Online. Library) 220, 85–98 (2005)CrossRefGoogle Scholar
  11. 11.
    E.P. Paschalis, R. Mendelsohn, A.L. Boskey, Clin. Orthop. Relat. Res.® 469(8), 2170 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Bennet, A. Akiva, D. Faivre, G. Malkinson, K. Yaniv, S. Abdelilah-Seyfried, P. Fratzl, A. Masic, Biophys. J. 106(4), L17 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Akiva, G. Malkinson, A. Masic, M. Kerschnitzki, M. Bennet, P. Fratzl, L. Addadi, S. Weiner, K. Yaniv, Bone 75, 192 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Yashchenok, A. Masic, D. Gorin, B.S. Shim, N.A. Kotov, P. Fratzl, H. Möhwald, A. Skirtach, Small 9(3), 351 (2013)CrossRefGoogle Scholar
  15. 15.
    D. Radziuk, R. Schuetz, A. Masic, H. Moehwald, Phys. Chem. Chem. Phys. 16(44), 24621 (2014)CrossRefGoogle Scholar
  16. 16.
    A. Zoladek, F. Pascut, P. Patel, I. Notingher, J. Spectro. 24(1–2), 131 (2010)CrossRefGoogle Scholar
  17. 17.
    M. Moskovits, Rev. Mod. Phys. 57(3), 783 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kneipp, H. Kneipp, K. Kneipp, Chem. Soc. Rev. 37(5), 1052 (2008)CrossRefGoogle Scholar
  19. 19.
    C.R. Yonzon, O. Lyandres, N.C. Shah, J.A. Dieringer, R.P. Van Duyne, Surface-Enhanced Raman Scattering (Springer, Berlin, 2006), pp. 367–379CrossRefGoogle Scholar
  20. 20.
    S. Nie, S.R. Emory, Science 275(5303), 1102 (1997)CrossRefGoogle Scholar
  21. 21.
    D.K. Lim, K.S. Jeon, H.M. Kim, J.M. Nam, Y.D. Suh, Nat. Mater. 9(1), 60 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    D.K. Lim, K.S. Jeon, J.H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.M. Nam, Nat. Nanotechnol. 6(7), 452 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    C. Matthäus, T. Chernenko, J.A. Newmark, C.M. Warner, M. Diem, Biophys. J. 93(2), 668 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)CrossRefGoogle Scholar
  25. 25.
    K. Klein, A.M. Gigler, T. Aschenbrenner, R. Monetti, W. Bunk, F. Jamitzky, G. Morfill, R.W. Stark, J. Schlegel, Biophys. J. 102(2), 360 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    N. Vidavsky, A. Masic, A. Schertel, S. Weiner, L. Addadi, J. Struct. Biol. 192(3), 358 (2015)CrossRefGoogle Scholar
  27. 27.
    A.P. Rodó, L. Váchová, Z. Palková, PLoS ONE 7(3), e33229 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    T. Barilero, T. Le Saux, C. Gosse, L. Jullien, Anal. Chem. 81(19), 7988 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Luby-Phelps, S. Mujumdar, R. Mujumdar, L. Ernst, W. Galbraith, A. Waggoner, Biophys. J. 65(1), 236 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    E. Neher, G. Augustine, J. Phys. 450, 273 (1992)Google Scholar
  31. 31.
    J. Becerra, G. Montes, S. Bexiga, L. Junqueira, Cell Tissue Res. 230(1), 127 (1983)CrossRefGoogle Scholar
  32. 32.
    S. Bentov, P. Zaslansky, A. Al-Sawalmih, A. Masic, P. Fratzl, A. Sagi, A. Berman, B. Aichmayer, Nat. Commun. 3, 839 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    X. Long, M.J. Nasse, Y. Ma, L. Qi, Phys. Chem. Chem. Phys. 14(7), 2255 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Amini, A. Masic, L. Bertinetti, J.S. Teguh, J.S. Herrin, X. Zhu, H. Su, A. Miserez, Nat. Commun. 5 (2014)Google Scholar
  35. 35.
    M.D. Morris, G.S. Mandair, Clin. Orthop. Relat. Res.® 469(8), 2160 (2011)CrossRefGoogle Scholar
  36. 36.
    N. Gierlinger, T. Keplinger, M. Harrington, Nat. Protoc. 7(9), 1694 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Berlin, T. Salge, M. Falke, D. Goran, in Recent Advances in EDS and EBSD Technology, 42nd Lunar and Planetary Science Conference (2011)Google Scholar
  38. 38.
    A. Masic, J.C. Weaver, J. Struct. Biol. 189(3), 269 (2015)CrossRefGoogle Scholar
  39. 39.
    F. Casadio, R.P. Van Duyne, Analyst 138(24), 7276 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    F. Pozzi, M. Leona, J. Raman Spectrosc. 47(1), 67 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    R.J. Clark, Handbook of Vibrational Spectroscopy (2002)Google Scholar
  42. 42.
    M. Aceto, A. Agostino, G. Fenoglio, P. Baraldi, P. Zannini, C. Hofmann, E. Gamillscheg, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95, 235 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    N. Eastaugh, V. Walsh, R. Chaplin, T. Siddall, The Pigment Compendium CD-ROM (Elsevier, Amsterdam, 2004)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeUSA
  2. 2.Department of Civil and Environmental EngineeringMITCambridgeUSA

Personalised recommendations