Advertisement

ISERS Microscopy for Tissue-Based Cancer Diagnostics with SERS Nanotags

  • Yuying Zhang
  • Sebastian SchlückerEmail author
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

Immuno-SERS (iSERS) microscopy is an emerging imaging technique in tissue-based cancer diagnostics, which is based on antibodies labelled with SERS-active noble metal nanoparticles (NPs) in conjunction with Raman microspectroscopy for localizing target proteins. Advantages of SERS over existing labeling approaches include its high capacity for spectral multiplexing (parallel detection of target molecules), quantification (based on the characteristic SERS signatures), high photostability (no or minimal photobleaching), minimization of autofluorescence from biological specimens (via red to near-infrared excitation), and the technical advantage of using only a single laser excitation line. In this book chapter, we will first give a very brief tutorial on the fundamentals of SERS, followed by an introduction into the concept and current designs of target-specific SERS probes based on noble metal NPs. Next, the fast developing applications of iSERS microscopy for tissue-based cancer diagnostics are highlighted, and finally the challenges and future perspectives of this emerging field are presented.

References

  1. 1.
    D.E. Carvajal-Hausdorf, K.A. Schalper, V.M. Neumeister, D.L. Rimm, Lab. Invest. (2014)Google Scholar
  2. 2.
    E.C. Stack, C. Wang, K.A. Roman, C.C. Hoyt, Methods 70(1), 46 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Liu, S.K. Lau, V.A. Varma, R.A. Moffitt, M. Caldwell, T. Liu, A.N. Young, J.A. Petros, A.O. Osunkoya, T. Krogstad et al., ACS nano 4(5), 2755 (2010)CrossRefGoogle Scholar
  4. 4.
    L.W. Wang, C.W. Peng, C. Chen, Y. Li, Breast Cancer Res. Treat. 151(1), 7 (2015)CrossRefGoogle Scholar
  5. 5.
    T.Q. Vu, W.Y. Lam, E.W. Hatch, D.S. Lidke, Cell Tissue Res. 360(1), 71 (2015)CrossRefGoogle Scholar
  6. 6.
    R. Lankowicz, Joseph, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, USA, 2006)CrossRefGoogle Scholar
  7. 7.
    A. Matschulat, D. Drescher, J. Kneipp, ACS Nano 4(6), 3259 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Vendrell, K.K. Maiti, K. Dhaliwal, Y.T. Chang, Trends Biotechnol. 31(4), 249 (2013)CrossRefGoogle Scholar
  9. 9.
    W. Xie, S. Schlücker, Phys. Chem. Chem. Phy. 15(15), 5329 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Feng, S. Huang, D. Lin, G. Chen, Y. Xu, Y. Li, Z. Huang, J. Pan, R. Chen, H. Zeng, Int. J. Nanomedicine 10, 537 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Feng, D. Lin, J. Lin, B. Li, Z. Huang, G. Chen, W. Zhang, L. Wang, J. Pan, R. Chen et al., Analyst 138(14), 3967 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    K. Kong, C. Kendall, N. Stone, I. Notingher, Adv. Drug Delivery Rev. (2015)Google Scholar
  13. 13.
    Y. Wang, S. Schlücker, Analyst 138(8), 2224 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Wang, B. Yan, L. Chen, Chem. Rev. 113(3), 1391 (2012)CrossRefGoogle Scholar
  15. 15.
    W.E. Doering, M.E. Piotti, M.J. Natan, R.G. Freeman, Adv. Mater. 19(20), 3100 (2007)CrossRefGoogle Scholar
  16. 16.
    R.L. McCreery, Raman Spectroscopy for Chemical Analysis, vol. 225 (Wiley, New York, 2005)Google Scholar
  17. 17.
    S. Schlücker, Chem. Phys. Chem. 10(9–10), 1344 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Schlücker (ed.), Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, New York, 2011)Google Scholar
  19. 19.
    S. Schlücker, Angew. Chem. Int. Ed. 53(19), 4756 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Moskovits, Rev. Mod. Phy. 57(3), 783 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    A. Otto, J. Raman Spectrosc. 22(12), 743 (1991)ADSCrossRefGoogle Scholar
  22. 22.
    A. Campion, P. Kambhampati, Chem. Soc. Rev. 27(4), 241 (1998)CrossRefGoogle Scholar
  23. 23.
    M. Moskovits, J. Raman Spectrosc. 36(6–7), 485 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, New Yark, 2006)CrossRefGoogle Scholar
  26. 26.
    B. Küstner, M. Gellner, M. Schütz, F. Schöppler, A. Marx, P. Ströbel, P. Adam, C. Schmuck, S. Schlücker, Angew. Chem. Int. Ed. 48(11), 1950 (2009)CrossRefGoogle Scholar
  27. 27.
    X. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, Nat. Biotechnol. 26(1), 83 (2008)CrossRefGoogle Scholar
  28. 28.
    G. von Maltzahn, A. Centrone, J.H. Park, R. Ramanathan, M.J. Sailor, T.A. Hatton, S.N. Bhatia, Adv. Mater. 21(31), 3175 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Gellner, B. Küstner, S. Schlücker, Vib. Spectrosc. 50(1), 43 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Mie, Ann. der Phys. 330(3), 377 (1908)ADSCrossRefGoogle Scholar
  31. 31.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New Yark, 2008)Google Scholar
  32. 32.
    Y. Cui, B. Ren, J.L. Yao, R.A. Gu, Z.Q. Tian, J. Phy. Chem. B 110(9), 4002 (2006)CrossRefGoogle Scholar
  33. 33.
    C. Sauerbeck, M. Haderlein, B. Schürer, B. Braunschweig, W. Peukert, R.N. Klupp, Taylor. ACS Nano 8(3), 3088 (2014)CrossRefGoogle Scholar
  34. 34.
    W. Shi, Y. Sahoo, M.T. Swihart, P. Prasad, Langmuir 21(4), 1610 (2005)CrossRefGoogle Scholar
  35. 35.
    M. Rycenga, K.K. Hou, C.M. Cobley, A.G. Schwartz, P.H. Camargo, Y. Xia, Physical Chemistry Chemical Physics 11(28), 5903 (2009)CrossRefGoogle Scholar
  36. 36.
    A.M. Fales, H. Yuan, T. Vo-Dinh, J. Phy. Chem. C 118(7), 3708 (2014)CrossRefGoogle Scholar
  37. 37.
    Y. Liu, H. Yuan, F.R. Kersey, J.K. Register, M.C. Parrott, T. Vo-Dinh, Sensors 15(2), 3706 (2015)CrossRefGoogle Scholar
  38. 38.
    C. Hrelescu, T.K. Sau, A.L. Rogach, F. Jäckel, J. Feldmann, Appl. Phys. Lett. 94(15), 153113 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    P. Negri, R.A. Dluhy, J. Biophotonics 6(1), 20 (2013)CrossRefGoogle Scholar
  40. 40.
    S.H. Seo, B.M. Kim, A. Joe, H.W. Han, X. Chen, Z. Cheng, E.S. Jang, Biomaterials 35(10), 3309 (2014)CrossRefGoogle Scholar
  41. 41.
    C.J. Orendorff, L. Gearheart, N.R. Jana, C.J. Murphy, Phys. Chem. Chem. Phys. 8(1), 165 (2006)CrossRefGoogle Scholar
  42. 42.
    N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Chem. Rev. 111(6), 3913 (2011)CrossRefGoogle Scholar
  43. 43.
    X. Su, J. Zhang, L. Sun, T.W. Koo, S. Chan, N. Sundararajan, M. Yamakawa, A.A. Berlin, Nano lett. 5(1), 49 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    L. Sun, K.B. Sung, C. Dentinger, B. Lutz, L. Nguyen, J. Zhang, H. Qin, M. Yamakawa, M. Cao, Y. Lu et al., Nano lett. 7(2), 351 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    M. Salehi, D. Steinigeweg, P. Ströbel, A. Marx, J. Packeisen, S. Schlücker, J. Biophotonics 6(10), 785 (2013)Google Scholar
  46. 46.
    M. Gellner, D. Steinigeweg, S. Ichilmann, M. Salehi, M. Schütz, K. Kömpe, M. Haase, S. Schlücker, Small 7(24), 3445 (2011)CrossRefGoogle Scholar
  47. 47.
    J.H. Kim, J.S. Kim, H. Choi, S.M. Lee, B.H. Jun, K.N. Yu, E. Kuk, Y.K. Kim, D.H. Jeong, M.H. Cho et al., Anal. Chem. 78(19), 6967 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Jeong, Y.i. Kim, H. Kang, G. Kim, M.G. Cha, H. Chang, K.O. Jung, Y.H. Kim, B.H. Jun, Y.S. Lee, et al., Sci. Rep. 5 (2015)Google Scholar
  49. 49.
    C. Wang, Y. Chen, T. Wang, Z. Ma, Z. Su, Adv. Funct. Mater. 18(2), 355 (2008)CrossRefGoogle Scholar
  50. 50.
    M. Schütz, S. Schlücker, Phys. Chem. Chem. Phy. 17(37), 24356 (2015)CrossRefGoogle Scholar
  51. 51.
    S.J. Cho, Y.H. Ahn, K.K. Maiti, U. Dinish, C.Y. Fu, P. Thoniyot, M. Olivo, Y.T. Chang, Chem. Commun. 46(5), 722 (2010)CrossRefGoogle Scholar
  52. 52.
    K.K. Maiti, A. Samanta, M. Vendrell, K.S. Soh, M. Olivo, Y.T. Chang, Chem. Commun. 47(12), 3514 (2011)CrossRefGoogle Scholar
  53. 53.
    A. Samanta, K.K. Maiti, K.S. Soh, X. Liao, M. Vendrell, U. Dinish, S.W. Yun, R. Bhuvaneswari, H. Kim, S. Rautela et al., Angew. Chem. Int. Ed. 50(27), 6089 (2011)CrossRefGoogle Scholar
  54. 54.
    K.K. Maiti, U. Dinish, A. Samanta, M. Vendrell, K.S. Soh, S.J. Park, M. Olivo, Y.T. Chang, Nano Today 7(2), 85 (2012)CrossRefGoogle Scholar
  55. 55.
    S. Harmsen, M.A. Bedics, M.A. Wall, R. Huang, M.R. Detty, M.F. Kircher, Nature communications 6 (2015)Google Scholar
  56. 56.
    J. Ni, R.J. Lipert, G.B. Dawson, M.D. Porter, Anal. Chem. 71(21), 4903 (1999)CrossRefGoogle Scholar
  57. 57.
    M.D. Porter, R.J. Lipert, L.M. Siperko, G. Wang, R. Narayanan, Chem. Soc. Rev. 37(5), 1001 (2008)CrossRefGoogle Scholar
  58. 58.
    C. Jehn, B. Küstner, P. Adam, A. Marx, P. Ströbel, C. Schmuck, S. Schlücker, Phys. Chem. Chem. Phys. 11(34), 7499 (2009)CrossRefGoogle Scholar
  59. 59.
    X.S. Zheng, P. Hu, Y. Cui, C. Zong, J.M. Feng, X. Wang, B. Ren, Anal. Chem. 86(24), 12250 (2014)CrossRefGoogle Scholar
  60. 60.
    S.P. Mulvaney, M.D. Musick, C.D. Keating, M.J. Natan, Langmuir 19(11), 4784 (2003)CrossRefGoogle Scholar
  61. 61.
    W.E. Doering, S. Nie, Anal. Chem. 75(22), 6171 (2003)CrossRefGoogle Scholar
  62. 62.
    W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26(1), 62 (1968)ADSCrossRefGoogle Scholar
  63. 63.
    M. Schütz, B. Küstner, M. Bauer, C. Schmuck, S. Schlücker, Small 6(6), 733 (2010)CrossRefGoogle Scholar
  64. 64.
    M. Li, J. Zhang, S. Suri, L.J. Sooter, D. Ma, N. Wu, Anal. Chem. 84(6), 2837 (2012)CrossRefGoogle Scholar
  65. 65.
    D. Steinigeweg, M. Schütz, M. Salehi, S. Schlücker, Small 7(17), 2443 (2011)CrossRefGoogle Scholar
  66. 66.
    M. Schütz, D. Steinigeweg, M. Salehi, K. Kömpe, S. Schlücker, Chem. Commun. 47(14), 4216 (2011)CrossRefGoogle Scholar
  67. 67.
    J.M. Montenegro, V. Grazu, A. Sukhanova, S. Agarwal, M. Jesus, I. Nabiev, A. Greiner, W.J. Parak, Adv. Drug Delivery Rev. 65(5), 677 (2013)CrossRefGoogle Scholar
  68. 68.
    D.S. Grubisha, R.J. Lipert, H.Y. Park, J. Driskell, M.D. Porter, Anal. Chem. 75(21), 5936 (2003)CrossRefGoogle Scholar
  69. 69.
    B. Lutz, C. Dentinger, L. Sun, L. Nguyen, J. Zhang, A. Chmura, A. Allen, S. Chan, B. Knudsen, Journal of Histochemistry & Cytochemistry 56(4), 371 (2008)CrossRefGoogle Scholar
  70. 70.
    G.T. Hermanson, Bioconjugate Techniques (Academic Press, Cambridge, 2008)Google Scholar
  71. 71.
    M. Salehi, L. Schneider, P. Ströbel, A. Marx, J. Packeisen, S. Schlücker, Nanoscale 6(4), 2361 (2014)ADSCrossRefGoogle Scholar
  72. 72.
    Y. Zhang, B. Walkenfort, J.H. Yoon, S. Schlücker, W. Xie, Phys. Chem. Chem. Phys. (2015)Google Scholar
  73. 73.
    S. Schlücker, M.D. Schaeberle, S.W. Huffman, I.W. Levin, Anal. Chem. 75(16), 4312 (2003)CrossRefGoogle Scholar
  74. 74.
    S. Schlücker, B. Küstner, A. Punge, R. Bonfig, A. Marx, P. Ströbel, J. Raman Spectrosc. 37(7), 719 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    Y. Chen, X. Zheng, G. Chen, C. He, W. Zhu, S. Feng, G. Xi, R. Chen, F. Lan, H. Zeng, Int. J. Nanomedicine 7, 73 (2012)Google Scholar
  76. 76.
    B.R. Lutz, C.E. Dentinger, L.N. Nguyen, L. Sun, J. Zhang, A.N. Allen, S. Chan, B.S. Knudsen, ACS Nano 2(11), 2306 (2008)CrossRefGoogle Scholar
  77. 77.
    Y.W. Wang, A. Khan, M. Som, D. Wang, Y. Chen, S.Y. Leigh, D. Meza, P.Z. McVeigh, B.C. Wilson, J.T. Liu, Technology 2(02), 118 (2014)CrossRefGoogle Scholar
  78. 78.
    P. Lackie, R. Hennessy, G. Hacker, J. Polak, Histochemistry 83(6), 545 (1985)CrossRefGoogle Scholar
  79. 79.
    M. Hayat, Colloidal Gold: Principles, Methods and Applications (San Diego, 1989)Google Scholar
  80. 80.
    S. Barua, J.W. Yoo, P. Kolhar, A. Wakankar, Y.R. Gokarn, S. Mitragotri, Proc. National Acad. Sci. 110(9), 3270 (2013)ADSCrossRefGoogle Scholar
  81. 81.
    R.P. Bagwe, L.R. Hilliard, W. Tan, Langmuir 22(9), 4357 (2006)CrossRefGoogle Scholar
  82. 82.
    E. Perets, A. Indrasekara, A. Kurmis, N. Atlasevich, L. Fabris, J. Arslanoglu, Analyst 140(17), 5971 (2015)ADSCrossRefGoogle Scholar
  83. 83.
    X. Wang, X. Qian, J.J. Beitler, Z.G. Chen, F.R. Khuri, M.M. Lewis, H.J.C. Shin, S. Nie, D.M. Shin, Cancer Res. 71(5), 1526 (2011)CrossRefGoogle Scholar
  84. 84.
    A. Housni, M. Ahmed, S. Liu, R. Narain, J. Phy. Chem. C 112(32), 12282 (2008)CrossRefGoogle Scholar
  85. 85.
    B. Zhang, X. Wang, F. Liu, Y. Cheng, D. Shi, Langmuir 28(48), 16605 (2012)CrossRefGoogle Scholar
  86. 86.
    H. Xu, J. Xu, X. Wang, D. Wu, Z.G. Chen, A.Y. Wang, ACS Appl. Mater. Interfaces 5(8), 2901 (2013)CrossRefGoogle Scholar
  87. 87.
    K.M. Tichauer, K.S. Samkoe, K.J. Sexton, J.R. Gunn, T. Hasan, B.W. Pogue, J. Biomed. Opt. 17(6), 0660011 (2012)CrossRefGoogle Scholar
  88. 88.
    L. Sinha, Y. Wang, C. Yang, A. Khan, J.G. Brankov, J.T. Liu, K.M. Tichauer, Sci. Rep. 5 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenEssenGermany

Personalised recommendations