Advertisement

Characterization of Therapeutic Coatings on Medical Devices

  • Klaus WormuthEmail author
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

Therapeutic coatings on medical devices such as catheters, guide wires and stents improve biocompatibility by favorably altering the chemical nature of the device/tissue or device/blood interface. Such coatings often minimize tissue damage (reduce friction), decrease chances for blood clot formation (prevent platelet adsorption), and improve the healing response (deliver drugs). Confocal Raman microscopy provides valuable information about biomedical coatings by, for example, facilitating the measurement of the thickness and swelling of friction-reducing hydrogel coatings on catheters, and by determining the distribution of drug within polymer-based a drug eluting coatings on stents. This chapter explores the application of Raman microscopy to the imaging of thin coatings of cross-linked poly(vinyl pyrrolidone) gels, parylene films, mixtures of dexamethasone with various polymethacrylates, and mixtures of rapamycin with hydrolysable (biodegradable) poly(lactide-co-glycolide) polymers. Raman microscopy measures the thickness and swelling of coatings, reveals the degree of mixing of drug and polymer, senses the hydrolysis of biodegradable polymers, and determines the polymorphic forms of drug present within thin therapeutic coatings on medical devices.

References

  1. 1.
    B. Ratner, A. Hoffman, F. Schoen, J. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2nd edn. (Academic Press, San Diego, London, 2004)Google Scholar
  2. 2.
    B. Ratner, S. Bryant, Ann. Rev. Biomed. Eng. 6, 41 (2004)CrossRefGoogle Scholar
  3. 3.
    D. Klee, H. Höcker, Adv. Polym. Sci. 149, 1 (1999)CrossRefGoogle Scholar
  4. 4.
    P. Serruys, A. Gershlick, Handbook of Drug-Eluting Stents (Taylor & Frances, London, New York, 2005)CrossRefGoogle Scholar
  5. 5.
    G.K.S.W. Kim, Appl. Opt. 38, 5968 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    N. Everall, Spectroscopy 19, 22 (2004)Google Scholar
  7. 7.
    T. Bridges, M. Houlne, J. Harris, Anal. Chem. 76, 576 (2004)CrossRefGoogle Scholar
  8. 8.
    J. Fortin, T. Lu, Chemical Vapor Deposition Polymerization (Kluwer Academic Publishers, Dordrecht, 2003)Google Scholar
  9. 9.
    F. Siepmann, V.L. Brun, J. Siepmann, J. Controlled Release 115, 298 (2006)CrossRefGoogle Scholar
  10. 10.
    R. Hilfiker, Polymorphism in the Pharmaceutical Industry (Wiley-VCH, Weinheim, 2006)CrossRefGoogle Scholar
  11. 11.
    B. Hancock, G. Zografi, J. Pharm. Sci. 86, 1 (1997)CrossRefGoogle Scholar
  12. 12.
    H. Konno, L. Taylor, J. Pharm. Sci. 95, 2692 (2006)CrossRefGoogle Scholar
  13. 13.
    P. Marsac, S. Shamblin, L. Taylor, Pharm. Res. 23, 2417 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Haaland, E. Thomas, Anal. Chem. 60, 1193 (1988)CrossRefGoogle Scholar
  15. 15.
    M. Pelletier, Appl. Spectrosc. 57, 20A (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Beiner, K. Schröter, E. Hempel, S. Reissig, E. Donth, Macromolecular 32, 6278 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    J. Anderson, M. Shive, Adv. Drug Delivery Rev. 28, 5 (1997)CrossRefGoogle Scholar
  18. 18.
    A. Belu, C. Mahoney, K. Wormuth, J. Controlled Release 126, 111 (2008)CrossRefGoogle Scholar
  19. 19.
    A. Hausberger, P. DeLuca, J. Pharm. Biomed. Anal. 13, 747 (1995)CrossRefGoogle Scholar
  20. 20.
    G. Kister, G. Cassanas, M. Vert, Polymer 39, 3335 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.SurModics, Inc.Eden PrairieUSA

Personalised recommendations