Advertisement

Raman Imaging of Plant Cell Walls

  • Notburga GierlingerEmail author
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

To gain a better understanding of plant cell walls, several microscopic and chemical methods have been used for their analysis in recent years. However, a knowledge gap exists about the location, quantity and structural arrangement of molecules on the micrometer scale within the native cell wall. Advances in confocal Raman microscopy and imaging have tackled this problem in a non-invasive way and provide chemical and structural information in-situ with a high spatial resolution (<0.5 \(\upmu {\mathrm m}\)). Examples of high resolution Raman imaging on wood cells are given, showing that changes in polymer chemistry and orientation can be followed within and between different cell wall layers. In horsetail (Equisetum hyemale) tissue, in addition to the mapping of plant cell wall polymers, the distribution of amorphous silica is investigated. Area scans from a cross section are included as well as a depth profiling within a silica-rich knob on the outer stem wall.

Notes

Acknowledgements

R. Nöske (Potsdam University, Department of Chemistry) is thanked for providing the horsetail sample, B. Clair (Universite Montpellier) for the tropical wood sample and I. Burgert, O. Paris and P. Fratzl (Max Planck Institute of Colloids and Interfaces, Department Biomaterials, Potsdam) for enabling the work. The author acknowledges the APART program of the Austrian Academy of Sciences and the Max Planck Society for funding.

References

  1. 1.
    C. Martin, K. Bhatt, K. Baumann, Curr. Opin. Plant Biol. 4(6), 540 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Boudet, The Plant Cell Wall—Annual Plant Reviews (Blackwell Publishing, CRC Press, 2003), chap. Towards an understanding of the supramolecular organization of the lignified wall, pp. 155–178Google Scholar
  3. 3.
    M. Jarvis, M. McCann, Plant Physiol. Biochem. 38(1/2), 1 (2000)CrossRefGoogle Scholar
  4. 4.
    M. O’Neill, W. York, The Plant Cell Wall—Annual Plant Reviews (Blackwell Publishing, CRC Press, 2003), chap. The composition and structure of plant primary cell walls, pp. 1–44Google Scholar
  5. 5.
    A. O’Sullivan, Cellulose 4(3), 173 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Atalla, MIE Bioforum (UNI Publisher Co., Japan, 1999), chap. The structure of native celluloses, and the origin of their variabilityGoogle Scholar
  7. 7.
    R. Brown, I. Saxena, Plant Physiol. Biochem. 38(1–2), 57 (2000)CrossRefGoogle Scholar
  8. 8.
    D. Klemm, B. Heublein, H. Fink, A. Bohn, Angew. Chemie. Int. Ed. 44(22), 3358 (2005)CrossRefGoogle Scholar
  9. 9.
    R. Atalla, J. Hackney, I. Uhlin, N. Thompson, Int. J. Biol. Macromol. 15(2), 109 (1993)CrossRefGoogle Scholar
  10. 10.
    S. Fry, J. Exp. Bot. 40(1), 1 (1989)CrossRefGoogle Scholar
  11. 11.
    C. Plomion, G. Leprovost, A. Stokes, Plant Physiol. 127, 1513 (2001)CrossRefGoogle Scholar
  12. 12.
    D. Fengel, G. Wegener, Wood: Chemistry, Ultrastructure, Reactions (Walter de Gruyter & Co., Berlin, 1989)Google Scholar
  13. 13.
    J. Barnett, V. Bonham, Biol. Rev. 79(2), 461 (2004)CrossRefGoogle Scholar
  14. 14.
    M. McCann, M. Hammouri, R. Wilson, P. Belton, K. Roberts, Plant Physiol. 100(100), 1940 (1992)CrossRefGoogle Scholar
  15. 15.
    M. McCann, M. Bush, D. Milionia, P. Sadoa, N. Stacey, G. Catchpole, M. Defernez, N. Carpita, H. Hoft, P. Ulvskov, R. Wilson, K. Roberts, Phytochemistry 57, 811 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Kacuráková, P. Capeka, V. Sasinková, N. Wellner, A. Ebringerova, Carbohydr. Polym. 43, 195 (2000)CrossRefGoogle Scholar
  17. 17.
    D. Stewart, Appl. Spectro. 50(3), 357 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    C. Séné, M. McCann, R. Wilson, R. Crinter, Plant Physiol. 106, 1623 (1994)CrossRefGoogle Scholar
  19. 19.
    D. Himmelsbach, S. Khahili, D. Akin, Vib. Spectrosc. 19, 361 (1999)CrossRefGoogle Scholar
  20. 20.
    R. Atalla, U. Agarwal, Science 227, 636 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    G. Toole, M. Kacurakova, A. Smith, K. Waldron, R. Wilson, Carbohydr. Res. 339(3), 629 (2004)CrossRefGoogle Scholar
  22. 22.
    V. Morris, S. Ring, A. MacDougall, R. Wilson, The Plant Cell Wall - Annual Plant Reviews (Blackwell, 2003), chap. Biophysical characterisation of plant cell walls, pp. 55–91Google Scholar
  23. 23.
    B. Schrader, A. Hoffmann, A. Simon, J. Sawatzki, Vib. Spectrosc. 1(3), 239 (1991)CrossRefGoogle Scholar
  24. 24.
    M. Baranska, H. Schulz, P. Rösch, M. Strehle, J. Popp, Analyst 129(10), 926 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    R. Baranski, M. Baranska, H. Schulz, Planta 222(3), 448 (2005)CrossRefGoogle Scholar
  26. 26.
    M. Baranska, H. Schulz, E. Joubert, M. Manley, Anal. Chem. 78(22), 7716 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Atalla, J. Ranua, E. Malcolm, Tappi J. 67(2), 96 (1984)Google Scholar
  28. 28.
    J. Wiley, R. Atalla, Carbohydr. Res. 160, 113 (1987)CrossRefGoogle Scholar
  29. 29.
    R. Atalla, R. Whitmore, C. Heimbach, Macromolecules 13(6), 1717 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    S. Fischer, K. Schenzel, K. Fischer, W. Diepenbrock, Macromol. Symp. 223, 41 (2005)CrossRefGoogle Scholar
  31. 31.
    H. Edwards, D. Farwell, D. Webster, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(13), 2383 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    A. Jähn, M. Schröder, M. Füting, K. Schenzel, W. Diepenbrock, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 58, 2271 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P. Peetla, K. Schenzel, W. Diepenbrock, Appl. Spectrosc. 60(6), 682 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    W. Morrison, D. Himmelsbach, D. Akin, J. Evans, J. Agric. Food Chem. 51(9), 2565 (2003)CrossRefGoogle Scholar
  35. 35.
    Y. Liu, S. Kokot, T. Sambi, Analyst 123(4), 633 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    B. Schrader, H. Klump, K. Schenzel, H. Schulz, J. Mol. Struct. 509, 201 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    N. Gierlinger, M. Schwanninger, A. Reinecke, I. Burgert, Biomacromolecules 7(7), 2077 (2006)CrossRefGoogle Scholar
  38. 38.
    S. Eichhorn, J. Sirichaisit, R. Young, J. Mater. Sci. 36, 3129 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    H. Edwards, D. Farwell, D. Webster, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 53(13), 2383 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    U. Agarwal, Planta 224(5), 1141 (2006)CrossRefGoogle Scholar
  41. 41.
    N. Gierlinger, M. Schwanninger, Plant Physiol. 140(4), 1246 (2006)CrossRefGoogle Scholar
  42. 42.
    T. Röder, G. Koch, H. Sixta, Holzforschung 58, 480 (2004)CrossRefGoogle Scholar
  43. 43.
    U. Agarwal, S. Ralph, Appl. Spectrosc. 51(11), 1648 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    J. Barnett, G. Jeronimidis, Wood Quality and its Biological Basis (Blackwell Scientific Publisher, Oxford, 2003), chap. Reaction Wood, p. 226Google Scholar
  45. 45.
    T. Okuyama, H. Yamamoto, M. Yoshida, Y. Hattori, R. Archer, Ann. Sci. For. 51, 291 (1994)CrossRefGoogle Scholar
  46. 46.
    W. Côté, A. Day, Cellular Ultrastructure of Woody Plants (Syracuse University Press, Syracuse, 1965), chap. Anatomy and ultrastructue of reaction wood, pp. 391–418Google Scholar
  47. 47.
    N. Nishikubo, T. Awano, A. Banasiak, V. Bourquin, F. Ibatullin, R. Funada, H. Brumer, T. Teeri, T. Hayashi, B. Sundberg, E. Mellerowicz, Plant Cell Physiol. 48(6), 843 (2007)Google Scholar
  48. 48.
    H. Yamamoto, M. Yoshida, T. Okuyama, Planta 216(2), 280 (2002)CrossRefGoogle Scholar
  49. 49.
    N. Gierlinger, I. Burgert, NZ J. Forest. Sci. 36(1), 60 (2006)Google Scholar
  50. 50.
    P. Rösch, H. Schneider, U. Zimmermann, W. Kiefer, J. Popp, Biopolymers 74(1–2), 151 (2004)CrossRefGoogle Scholar
  51. 51.
    D. Dietrich, K. Witke, R. Rossler, G. Marx, Appl. Surf. Sci. 179(1–4), 230 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    K. Witke, J. Gotze, R. Rossler, D. Dietrich, G. Marx, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 60(12), 2903 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    J. Nowak, M. Florek, W. Kwiatek, J. Lekki, P. Chevallier, E.Z.N. Mestres, E. Dutkiewicz, A. Kuczumow, Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 25(2), 119 (2005)Google Scholar
  54. 54.
    A. Macnish, D. Irving, D. Joyce, V. Vithanage, A. Wearing, R. Webb, R. Frost, Aust. J. Bot. 51, 565 (2003)CrossRefGoogle Scholar
  55. 55.
    L. Prinsloo, W. du Plooy, C. van der Merwe, J. Raman Spectrosc. 35(7), 561 (2004)ADSCrossRefGoogle Scholar
  56. 56.
    D. Dietrich, S. Hemeltjen, N. Meyer, E. Baucker, G. Ruhle, O. Wienhaus, G. Marx, Anal. Bioanal. Chem. 374(4), 749 (2002)CrossRefGoogle Scholar
  57. 57.
    D. Dietrich, S. Hinke, W. Baumann, R. Fehlhaber, E. Baucher, G. Ruhle, O. Wienhaus, G. Marx, Anal. Bioanal. Chem. 376(3), 399 (2003)Google Scholar
  58. 58.
    N. Gierlinger, L. Sapei, O. Paris, Planta 227(5), 969 (2008)CrossRefGoogle Scholar
  59. 59.
    L. Sapei, N. Gierlinger, J. Hartmann, R. Nöske, P. Strauch, O. Paris, Anal. Bioanal. Chem. 389, 1249 (2007)CrossRefGoogle Scholar
  60. 60.
    T. Timell, Sven. Papperstidning 67(9), 356 (1964)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NanobiotechnologyUniversität für Bodenkultur WienViennaAustria

Personalised recommendations