Advertisement

Stress Analysis by Means of Raman Microscopy

  • Thomas WermelingerEmail author
  • Ralph Spolenak
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

Raman microscopy provides the unique possibility to measure stresses in a fast and uncomplicated way in the sub-micrometer range. The maximal lateral resolution is determined by the laser wavelength. In a Raman spectrum of a deformed or strained material, peak positions are shifted relative to the peak positions of stress-free material. Quantifying these shifts allows the determination of sign and magnitude of internal stresses. Depending on the Raman tensor and therefore on the material’s crystal structure, several components of the stress tensor can be measured. Hence, it is not always possible to analyze complicated stress states just by means of Raman microscopy without making adequate assumptions. For transparent Raman-active materials, three-dimensional stress fields can be measured. This chapter will outline the principles of Raman stress measurements and present case studies on ceramics, semiconductors and polymers.

References

  1. 1.
    N. Tamura, A. MacDowell, R. Spolenak, B. Valek, J. Bravman, W. Brown, R. Celestre, H. Padmore, B. Batterman, J.R. Patel, J. Synchrotron Radiat. 10, 137 (2003)CrossRefGoogle Scholar
  2. 2.
    J. Nucci, S. Kramer, E. Arzt, C. Volkert, J. Mater. Res. 20, 1851 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J. Bauch, J. Brechbühl, H. Ullrich, G. Meinl, H. Lin, W. Kebede, Cryst. Res. Technol. 34(1), 71 (1999)CrossRefGoogle Scholar
  4. 4.
    R. Keller, A. Roshko, R. Geiss, K. Bertness, T. Quinn, Microelectron. Eng. 75(1), 96 (2004)CrossRefGoogle Scholar
  5. 5.
    Q. Ma, S. Chiras, D. Clarke, Z. Suo, J. Appl. Phys. 78(3), 1614 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    I. Wolf, Semicond. Sci. Technol. 11, 139 (1995)CrossRefGoogle Scholar
  7. 7.
    F. Cerdeira, C. Buchenauer, F. Pollak, M. Cardona, Phys. Rev. B 5(2), 580 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    E. Anastassakis, A. Pinczuk, E. Burstein, F. Pollak, M. Cardona, Solid State Commun. 8, 1053 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    G. Abstreiter, Appl. Surf. Sci. 50(1–4), 73 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    V. Srikar, A. Swan, M. Unlu, B. Goldberg, S. Spearing, J. Microelectromech. Syst. 12(6), 779 (2003)CrossRefGoogle Scholar
  11. 11.
    S. Ganesan, A. Maradudin, J. Oitmaa, Ann. Phys. 56(2), 556 (1970)ADSCrossRefGoogle Scholar
  12. 12.
    R. Loudon, Adv. Phys. 13(52), 423 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    S. Narayanan, S. Kalidindi, L. Schadler, J. Appl. Phys. 82(5), 2595 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    E. Anastassakis, E. Burstein, J. Phys. Chem. Solids 32(2), 563 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    E. Anastassakis, J. Phys. Chem. Solids 32(2), 313 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    I. Dewolf, H. Norstrom, H. Maes, J. Appl. Phys. 74(7), 4490 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    E. Bonera, M. Fanciulli, D. Batchelder, J. Appl. Phys. 94(4), 2729 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    G. Loechelt, N. Cave, J. Menendez, J. Appl. Phys. 86(11), 6164 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    G. Loechelt, N. Cave, J. Menendez, Appl. Phys. Lett. 66(26), 3639 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    S. Hu, J. Appl. Phys. 70(6), R53 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    E. Bonera, M. Fanciulli, D. Batchelder, Appl. Phys. Lett. 81(18), 3377 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    H. Poulsen, S. Nielsen, E. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, D. Juul Jensen, J. Appl. Crystallogr. 34, 751 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Nowak, T. Manninen, C. Li, K. Heiskanen, S. Hannula, V. Lindroos, T. Soga, F. Yoshida, JSME Int. J. Ser. A Solid Mech. Mater. Eng. 46(3), 265 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    T. Wermelinger, C. Borgia, C. Solenthaler, R. Spolenak, Acta Mater. 55(14), 4657 (2007)CrossRefGoogle Scholar
  25. 25.
    W. Rasband, Imagej, National Institutes of Health: Bethesda, MD USA. (1997–2007). Image Processing and Analysis Google Scholar
  26. 26.
    R. Nowak, T. Sekino, K. Niihara, Philos. Mag. A-Phys. Condens. Matter Struct. Defects Mech. Prop. 74(1), 171 (1996)ADSGoogle Scholar
  27. 27.
    T. Damen, S. Porto, B. Tell, Phys. Rev. 142(2), 570 (1966)ADSCrossRefGoogle Scholar
  28. 28.
    F. Decremps, J. Pellicer-Porres, A. Saitta, J. Chervin, A. Polian, Phys. Rev. B 65(9), 092101 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    D. Mead, G. Wilkinson, J. Raman Spectrosc. 6(3), 123 (1977)ADSCrossRefGoogle Scholar
  30. 30.
    F. Manjon, K. Syassen, R. Lauck, High Press. Res. 22(2), 299 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    K. Tashiro, G. Wu, M. Kobayashi, Polymer 29(10), 1768 (1988)CrossRefGoogle Scholar
  32. 32.
    J. Moonen, W. Roovers, R. Meier, B. Kip, J. Polym. Sci. Part B-Polym. Phys. 30(4), 361 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    W. Wong, R. Young, J. Mater. Sci. 29(2), 510 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    V. Mitra, W. Risen, R. Baughman, J. Chem. Phys. 66(6), 2731 (1977)ADSCrossRefGoogle Scholar
  35. 35.
    J. Lefèvre, Ultra-high-performance polymer foils. PhD thesis, ETH Zurich (2008)Google Scholar
  36. 36.
    Y. Ward, R. Young, Polymer 42(18), 857 (2001)CrossRefGoogle Scholar
  37. 37.
    M. Moskovits, Rev. Mod. Phys. 57(3), 783 (1985)ADSCrossRefGoogle Scholar
  38. 38.
    S. Nie, S. Emery, Science 275(5303), 1102 (1997)CrossRefGoogle Scholar
  39. 39.
    L. Zhu, C. Georgi, M. Hecker, J. Rinderknecht, A. Mai, Y. Ritz, E. Zschech, J. Appl. Phys. 101(10), 104305 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratory of Nanometallurgy, Department of MaterialsETH ZurichZurichSwitzerland

Personalised recommendations