Advertisement

Software Requirements and Data Analysis in Confocal Raman Microscopy

  • Thomas DieingEmail author
  • Wolfram Ibach
Chapter
  • 1.5k Downloads
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)

Abstract

In confocal Raman microscopy experiments, hundreds of thousands of spectra are commonly acquired in each measurement. Every spectrum carries a wealth of information on the material at the position where the spectrum is recorded. From each of these spectra the relevant information can be extracted to allow i.e. the determination of the various phases present in the sample, variations in the strain state, or temporal evolutions. For this purpose, the spectra need to be prepared (i.e. background subtraction) before the relevant information can be extracted using appropriate filters and algorithms. This information can then be visualized as an image, which can be further processed and exported for the presentation of the results of the experiment. In this chapter, the requirements of the software in terms of handling the data streams and maintaining the spatial and spectral correlation between the spectra and the created images are illustrated. Spectral data processing features, simple and multi-variant algorithms for image creation as well as advanced data processing features are discussed.

References

  1. 1.
    WITec GmbH, Ultrafast confocal Raman imaging—application examples (2008). http://www.witec.de/en/download/Raman/UltrafastRaman.pdf
  2. 2.
    WITec GmbH, apyron: powerful data acquisition and post-processing (2015). https://youtu.be/vXH8Am8CVl4
  3. 3.
    L. Quintero, S. Hunt, M. Diem, Denoising of Raman spectroscopy signals (2007). Poster presented at the 2007 R2C Multi Spectral Discrimination Methods ConferenceGoogle Scholar
  4. 4.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C (The Press Syndicate of the University of Cambridge, 1999), 2nd edn., Chap. Savitzky-Golay Smoothing Filters, pp. 650–655Google Scholar
  5. 5.
    P. Ramos, I. Ruisánchez, J. Raman Spectrosc. 36, 848 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    G. Gaeta, C. Camerlingo, R. Ricio, G. Moro, M. Lepore, P. Indovina, Proc. SPIE 5687, 170 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    W. Burger, M.J. Burge, Digitale Bildverarbeitung: Eine Algorithmische Einführung Mit Java (Springer, Berlin, 2009)Google Scholar
  8. 8.
    D. Tschumperlé, Int. J. Com. Vis. 68(1), 65 (2006)CrossRefGoogle Scholar
  9. 9.
    T. Dieing, O. Hollricher, Vib. Spectro. 48, 22 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Pearson, Phil. Mag. 2(6), 559 (1901)CrossRefGoogle Scholar
  11. 11.
    C. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2007)zbMATHGoogle Scholar
  12. 12.
    T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning (Springer, New York, 2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    S. Wold, K. Esbensen, P. Geladi, Chemometr. Intell. Lab. Syst. 2(1–3), 37 (1987)CrossRefGoogle Scholar
  14. 14.
    H. Lohninger, PCA—loadings und scores (2012). http://www.statistics4u.info/fundstat_germ/cc_pca_loadscore.html
  15. 15.
    Wikipedia.com, Principal component analysis (2017). https://en.wikipedia.org/wiki/Principal_component_analysis
  16. 16.
    A. Hermelink, A. Brauer, P. Lasch, D. Naumann, Analyst 134(6), 1149 (2009)ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    WITec GmbH, Witec suite five. purchasable software (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.WITec GmbHUlmGermany

Personalised recommendations