Resolution and Performance of 3D Confocal Raman Imaging Systems

  • Thomas DieingEmail author
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)


Confocal Raman microscopes are the instruments of choice for chemical characterization in a wide variety of applications including geosciences (Jenniskens et al., in Nature 458(7237): 485, 2009 [1]), (Rotundi et al., in Planet Sci 43(1–2):367, 2008, [2]), (Heim et al., Geobiology in 10(4):280, 2012 [3]), biology (Hild et al., in J Struct Biol 168(3):426, 2009 [4]), (Gierlinger and Schwanninger, in J Spectrosc 21(2):69, 2007 [5]), (Hermelink et al., in Analyst 134(6):1149, 2009 [6]), nano-carbon materials (Xu et al., in ACS nano 5(1):147, 2010 [7]), (You et al., in Appl Phys Lett 93(10):103111, 2008 [8]), (Yu et al., in J Phys Chem C 112(33):12602, 2008 [9]) and pharmaceutics (Matthäus et al., in Mol Pharm 5(2):287, 2008 [10]), (Chernenko et al., in ACS nano 3(11):3552, 2009 [11]) to name but a few. Many pertinent examples can be found within this book. This chapter intends to shed light on the possibilities of confocal Raman systems in general, while briefly reviewing their origins and describing considerations such as spectral and spatial resolution as well as throughput. 3D confocal Raman imaging as well as compensation for surface topography during a confocal Raman image scan will also be outlined.



Proofreading by Olaf Hollricher and Damon Strom is gratefully acknowledged. Wolfram Ibach performed the measurements and prepared the images for Figs. 6.16 and 6.17 and was of immense help in many discussions.


  1. 1.
    P. Jenniskens, M. Shaddad, D. Numan, S. Elsir, A. Kudoda, M. Zolensky, L. Le, G. Robinson, J. Friedrich, D. Rumble et al., Nature 458(7237), 485 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A. Rotundi, G. Baratta, J. Borg, J. Brucato, H. Busemann, L. Colangeli, L. d’Hendecourt, Z. Djouadi, G. Ferrini, I. Franchi et al., Meteorit. Planet. Sci. 43(1–2), 367 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    C. Heim, J. Lausmaa, P. Sjövall, J. Toporski, T. Dieing, K. Simon, B. Hansen, A. Kronz, G. Arp, J. Reitner et al., Geobiology 10(4), 280 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Hild, F. Neues, N. Žnidaršič, J. Štrus, M. Epple, O. Marti, A. Ziegler, J. Struct. Biol. 168(3), 426 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Gierlinger, M. Schwanninger, J. Spectrosc. 21(2), 69 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Hermelink, A. Brauer, P. Lasch, D. Naumann, Analyst 134(6), 1149 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Y.N. Xu, D. Zhan, L. Liu, H. Suo, Z.H. Ni, T.T. Nguyen, C. Zhao, Z.X. Shen, ACS Nano 5(1), 147 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. You, T. Yu, J. Kasim, H. Song, X. Fan, Z. Ni, L. Cao, H. Jiang, D. Shen, J. Kuo et al., Appl. Phys. Lett. 93(10), 103111 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T. Yu, Z. Ni, C. Du, Y. You, Y. Wang, Z. Shen, J. Phys. Chem. C 112(33), 12602 (2008)CrossRefGoogle Scholar
  10. 10.
    C. Matthäus, A. Kale, T. Chernenko, V. Torchilin, M. Diem, Mol. Pharm. 5(2), 287 (2008)CrossRefGoogle Scholar
  11. 11.
    T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, M. Diem, ACS Nano 3(11), 3552 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Rayleigh, Lond. Edinburgh Dublin Phil. Mag. J. Sci. 42(255), 167 (1896)CrossRefGoogle Scholar
  13. 13.
    R. Millar, K. Gallacher, A. Samarelli, J. Frigerio, D. Chrastina, T. Dieing, G. Isella, D. Paul, Thin Solid Films (2015)Google Scholar
  14. 14.
    R. Millar, K. Gallacher, A. Samarelli, J. Frigerio, D. Chrastina, G. Isella, T. Dieing, D. Paul, Opt. Express (2015)Google Scholar
  15. 15.
    M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990)Google Scholar
  16. 16.
  17. 17.
    C.A. Mack, Microlith. World 13(1), 14 (2004)Google Scholar
  18. 18.
    S. Wilhelm, B. Gröbler, M. Gluch, H. Heinz, Jena, Germany: Carl Zeiss Advanced Imaging Microscopy p. 258 (2003).
  19. 19.
    N. Everall, Spectrosc.-Springfield Eugene Duluth- 19, 22 (2004)Google Scholar
  20. 20.
    N. Everall, Spectrosc.-Springfield Eugene Duluth- 19, 16 (2004)Google Scholar
  21. 21.
    N. Everall, J. Raman Spectrosc. 45(1), 133 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    P. Lasch, A. Hermelink, D. Naumann, Analyst 134(6), 1162 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    WITec GmbH. True surface microscopy (2017).
  24. 24.
    S. Ayas, G. Cinar, A.D. Ozkan, Z. Soran, O. Ekiz, D. Kocaay, A. Tomak, P. Toren, Y. Kaya, I. Tunc, et al., Sci. Rep. 3 (2013)Google Scholar
  25. 25.
    C. Roider, M. Ritsch-Marte, A. Jesacher, Opt. Lett. 41(16), 3825 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318(1), 131 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, Opt. Commun. 183(1), 333 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Anderson, Appl. Phys. Lett. 76(21), 3130 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    E. Bailo, V. Deckert, Chem. Soc. Rev. 37(5), 921 (2008)CrossRefGoogle Scholar
  30. 30.
    T. Schmid, L. Opilik, C. Blum, R. Zenobi, Angew. Chem. Int. Ed. 52(23), 5940 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J.J. Urban, Y. Pang, R. Gordon, J. Bokor, M.B. Salmeron, D.F. Ogletree et al., Nano Lett. 11(3), 1201 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo, A. Sasso, ACS Nano 8(12), 12300 (2014)CrossRefGoogle Scholar
  33. 33.
    G. Zito, G. Rusciano, A. Vecchione, G. Pesce, R. Di Girolamo, A. Malafronte, A. Sasso, Sci. Rep. 6 (2016)Google Scholar
  34. 34.
    K. Burns, K.B. Adams, J. Longwell, JOSA 40(6), 339 (1950)ADSCrossRefGoogle Scholar
  35. 35.
    G. Norlén, Physica Scripta 8(6), 249 (1973)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.WITec GmbHUlmGermany

Personalised recommendations