Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets

  • Alain JungenEmail author
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 66)


The following chapter will review the resonant Raman active modes of single-walled carbon nanotubes emphasizing the diameter-dependence of the radial breathing mode and selectivity of the optical transition energies (resonance). Thermal studies of individual freestanding single-walled carbon nanotubes showed a pronounced phonon softening. The second part of the chapter is devoted to Raman imaging of graphene. This particular type of carbon nanophase has become available only recently. The first Raman signatures of few-layer to single-layer graphene flakes could be obtained and compared with scanning probe microscopy. The effect of electrical charging (doping) on the Raman features is also demonstrated.



The author wishes to thank in particular Dr. Christoph Stampfer and Prof. Christofer Hierold. Many of the results summarized in the present chapter have been achieved with the support and collaboration of numerous people. They are (in alphabetic order) Lukas Durer, Prof. Klaus Ensslin, Dr. Davy Graf, Thomas Helbling, Dr. Stephan Hofmann, Francoise Molitor, Matthias Muoth, Dr. Jannik Meyer, Simone Pisana, Prof. Valentin Popov, Dr. Stephan Stoll and Dr. Ludger Wirtz. Samples featuring individual nanotubes have been provided in collaboration with Nicronex Ltd., Luxembourg (


  1. 1.
    J.D. Bernal, Proc. Roy. Soc. A 106, 749 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    P. Avouris, Z. Chen, V. Perebeinos, Nat. Nano. 2, 605 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Reich, C. Thomsen, J. Maultsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH Verlag GmbH, Weinheim, 2004)Google Scholar
  5. 5.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    R.A. Jishi, L. Venkattaraman, M.S. Dresselhaus, G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Phys. Rev. Lett. 80, 3779 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    J. Kuerti, G. Kresse, H. Kuzmany, Phys. Rev. B 85, 8869 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    V.N. Popov, V.E.V. Doren, M. Balkanski, Phys. Rev. B 59, 8355 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Phys. Rev. B 60, 8521 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 72(3), 035436 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    O. Dubay, G. Kresse, Phys. Rev. B 67, 035401 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 290, 1331 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  18. 18.
    G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth, Phys. Rev. Lett. 85, 5436 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    A. Jungen, C. Stampfer, J. Hoetzel, V. Bright, C. Hierold, Sens. Actuators, A-Phys. 130–131, 588 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H.J. Dai, Nature 395, 878 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    A. Jungen, V.N. Popov, C. Stampfer, L. Durrer, S. Stoll, C. Hierold, Phys. Rev. B 75, 041405 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 70(11), 115407 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    A. Jungen, S. Hofmann, J.C. Meyer, C. Stampfer, S. Roth, J. Robertson, C. Hierold, J. Micromech. Microeng. 17, 603 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    P. Avouris, J. Appenzeller, R. Martel, S.J. Wind, Proc. IEEE 91, 1772 (2003)CrossRefGoogle Scholar
  27. 27.
    A.P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, W. Hoenlein, Small 1, 382 (2005)CrossRefGoogle Scholar
  28. 28.
    C. Stampfer, T. Helbling, D. Obergfell, B. Schoeberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Nano Lett. 6, 233 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    D. Mann, Y.K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X.R. Wang, L. Zhang, Q. Wang, J. Guo, H.J. Dai, Nat. Nano. 2, 33 (2007)CrossRefGoogle Scholar
  30. 30.
    A. Jungen, J. Gauckler, C. Stampfer, L. Durrer, T. Helbling, C. Hierold, in IEEE MEMS 08 (AZ, USA, Tucson, 2008), p. 733Google Scholar
  31. 31.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61, 2981 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Science 438, 197 (2005)Google Scholar
  34. 34.
    Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Science 438, 201 (2005)Google Scholar
  35. 35.
    R. Vidano, D. Fischbach, L. Willis, T. Loehr, Solid State Commun. 39, 341 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)ADSCrossRefGoogle Scholar
  37. 37.
    N. Peres, F. Guinea, A.C. Neto, Phys. Rev. B 73, 125411 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    E.H. Hwang, S. Adam, S.D. Sarma, Phys. Rev. Lett. 98, 186806 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nat. Phys. 4, 144 (2008)CrossRefGoogle Scholar
  40. 40.
    C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91, 187401 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6, 198 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6, 2667 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Micro and NanosystemsETH ZurichZurichSwitzerland
  2. 2.Nicronex Ltd.LuxembourgLuxembourg

Personalised recommendations