Magnetostatic Modelling

  • Roman SzewczykEmail author
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 491)


Chapter presents the principles of finite elements method as well as limitation of this method from the point of view of modelling the thin layers. Methods of meshing, solving the differential equations and visualization of results are discussed. Possibility of the use of open source software for these processes is discussed. Finally, the advantages of the method of moments are presented in the case of modelling the thin layers.


  1. 1.
    Sevgi L (2014) Electromagnetic modeling and simulation, Wiley-IEEE PressGoogle Scholar
  2. 2.
    Kai X, Cao Z, Mi W, Yin W (2011) Fast eddy current forward solver for EMT based on Finite Element Method (FEM) and negligibly coupled field approximation. In: IEEE international conference on imaging systems and techniques (IST), Penang, Malaysia, p 17, 18, May 2011Google Scholar
  3. 3.
    Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8(4):169–175MathSciNetzbMATHGoogle Scholar
  4. 4.
    www.ansys.comGoogle Scholar
  5. 5.
    www.comsol.comGoogle Scholar
  6. 6. Scholar
  7. 7.
    www.gmsh.infoGoogle Scholar
  8. 8. Scholar
  9. 9. Scholar
  10. 10.
    www.freefem.orgGoogle Scholar
  11. 11.
    www.paraview.orgGoogle Scholar
  12. 12.
    www.vtk.orgGoogle Scholar
  13. 13.
    Szałatkiewicz J, Szewczyk R, Budny E, Kalinowski M, Kataja J, Råback P, Ruokolainen J (2017) Advances in FEM based modeling of waveguide and waveguide systems for microwave applications, using newly developed open source software. Adv Intell Syst Comput 543:172Google Scholar
  14. 14.
    Nowak P, Nowicki M, Juś A, Szewczyk R (2017) Utilization of eddy current tomography in automotive industry. Acta Physica Polonica A 131:1168CrossRefGoogle Scholar
  15. 15.
    Cheng SW, Dey TK, Shewchuk J (2012) Delaunay mesh generation, CRC PressGoogle Scholar
  16. 16.
    Frederick CO, Wong YC, Edge FW (1970) Two-Dimensional Automatic Mesh Generation for Structural Analysis. Int J Numer Methods Eng 2:133–144CrossRefGoogle Scholar
  17. 17.
    Frey WH (1987) Selective Refinement: A New Strategy for Automatic Node Placement in Graded Triangular Meshes. Int J Numer Methods Eng 24(11):2183–2200CrossRefGoogle Scholar
  18. 18.
    Schoeberl J (1997) An advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1:41–52CrossRefGoogle Scholar
  19. 19.
    Shewchuk JR (2012) Lecture notes on delaunay mesh generation, University of California at BerkeleyCrossRefGoogle Scholar
  20. 20.
    Jian-Ming J (1993) The finite element method in electromagnetic, WileyGoogle Scholar
  21. 21.
    Ruokolainen J, Malinen M, Råback P, Zwinger T, Pursula A, Byckling M (2017) ElmerSolver Manual CSC—IT Center for ScienceGoogle Scholar
  22. 22.
    Bartels B, Barsky A (1987) Introduction to splines for use in computer graphics and geometric modeling, ElsevierGoogle Scholar
  23. 23.
    Fritsch FN, Carlson RE (1980) Monotone Piecewise Cubic Interpolation. SIAM J Numer Anal 17:238–246MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bercovier M, Matskewich T (2017) Smooth bézier surfaces over unstructured quadrilateral meshes, SpringerCrossRefGoogle Scholar
  25. 25.
    Sirouspour S (2013) Advanced engineering and computational methodologies for intelligent mechatronics and robotics, IGI GlobalGoogle Scholar
  26. 26.
    Zlámal M (1968) On the finite element method. Numer Math 12:394–409MathSciNetCrossRefGoogle Scholar
  27. 27.
    Brandts J, Korotov S, Křížek M (2008) On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput Math Appl 55(10):2227–2233MathSciNetCrossRefGoogle Scholar
  28. 28.
    Szewczyk R (2016) Thin layer oriented magnetostatic calculation module for ELMER FEM, based on the method of the moments. In: 22 th International conference on Applied Physics of Condensed Matter, 22–24 June 2016, Štrbské Pleso, SlovakiaGoogle Scholar
  29. 29.
    Kittel C (2005) Introduction to solid state physics. WileyGoogle Scholar
  30. 30.
    Jaswal L, Singh B (2014) Ferrite materials: A chronological review. J Integ Sci Technol 2:69Google Scholar
  31. 31.
    Jiles DC (1998) Introduction to magnetism and magnetic materials, Chapman and HallGoogle Scholar
  32. 32.
    Jackiewicz D, Szewczyk R, Bienkowski A, Kachniarz M (2015) “New methodology of testing the stress dependence of magnetic hysteresis loop of the L17HMF heat resistant steel casting” Journal of Automation. Mob Rob Intell Syst 9:52Google Scholar
  33. 33.
    Jiles DC, Thoelke JB (1989) Theory of ferromagnetic hysteresis: determination of model parameters from experimental hysteresis loops. IEEE Trans Magn 25:3928CrossRefGoogle Scholar
  34. 34.
    Wysin GM (2012) Demagnetization fields, Florianopolis, Brazil.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Metrology and Biomedical Engineering, Faculty of MechatronicsWarsaw University of TechnologyWarsawPoland

Personalised recommendations