Advertisement

The Axiom of Choice as Interaction Brief Remarks on the Principle of Dependent Choices in a Dialogical Setting

  • Shahid RahmanEmail author
Chapter
  • 198 Downloads
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 43)

Abstract

The work of Roshdi Rashed has set a landmark in many senses, but perhaps the most striking one is his inexhaustible thrive to open new paths for the study of conceptual links between science and philosophy deeply rooted in the interaction of historic with systematic perspectives. In the present talk I will focus on how a framework that has its source in philosophy of logic, interacts with some new results on the foundations of mathematics. More precisely, the main objective of my brief remarks is to discuss some claims of the late Hintikka (1996, 2001) who brought forward the idea that a game-theoretical interpretation of the Axiom of Choice yields its meaning “evident”. More precisely I will show that if we develop Per Martin-Löf’s (1984) demonstration of the axiom within a dialogical setting, the claim of Hintikka can be upheld. However, the dialogical demonstration, shows that, contrary to the expectations of Hintikka, the meaning that the game-theoretical setting provides to the Axiom is compatible with constructivist rather than with classical tenets.

References

  1. Bishop, E. (1967). Foundations of constructive mathematics. New York, London: McGraw-Hill.Google Scholar
  2. Clerbout, N. (2014a). First-order dialogical games and tableaux. Journal of Philosophical Logic, 43(4), 785–801.CrossRefGoogle Scholar
  3. Clerbout, N. (2014b). Étude sur quelques sémantiques dialogiques: Concepts fondamentaux et éléments de métathéorie. London: College Publications.Google Scholar
  4. Clerbout, N. (2014c). Finiteness of plays and the dialogical problem of decidability. IfCoLog Journal of Logics and their Applications, 1(1), 115–140.Google Scholar
  5. Clerbout, N., & Rahman, S. (2015). Linking game-theoretical approaches with constructive type theory: dialogical strategies as CTT-demonstrations. Dordrecht: Springer.CrossRefGoogle Scholar
  6. Crubellier, M. (2014). Aristote, premiers analytiques. Traduction, introduction et commentaire. Garnier-Flammarion.Google Scholar
  7. Ebbinghaus, K. (1964). Ein formales Modell der Syllogistik des Aristoteles. Göttingen: Vandenhoeck & Ruprecht GmbH.Google Scholar
  8. Ebbinghaus, K. (2016). Un modèle formel de la syllogistique d’Aristote. (C. Lion, Trans.) College publication.Google Scholar
  9. Fraenkel, A., Bar-Hillel, Y., & Levy, A. (1973). Foundations of set theory (2nd ed.). Dordrecht: North-Holland.Google Scholar
  10. Goodman, N. D., & Myhill, J. (1978). Choice implies excluded middle. Zeitschrigt für mathematische Logik und Grundlagen der Mathematik, 24, 461.CrossRefGoogle Scholar
  11. Hintikka, J. (1973). Logic, language-games and information: Kantian themes in the philosophy of logic. Oxford: Clarendon Press.Google Scholar
  12. Hintikka, J. (1996). The principles of mathematics revisited. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Hintikka, J. (2001). Intuitionistic logic as epistemic logic. Synthese, 127, 7–19.CrossRefGoogle Scholar
  14. Jovanovic, R. (2013). Hintikka’s take on the axiom of choice and the constructive challenge. Revista de Humanidades de Valparaíso, 2, 135–152.Google Scholar
  15. Jovanovic, R. (2015). Hintikka’s Take on realism and the constructive challenge. London: College Publications.Google Scholar
  16. Keiff, L. (2007). Le Pluralisme dialogique: Approches dynamiques de l’argumentation formelle. Lille: PhD.Google Scholar
  17. Keiff, L. (2009). Dialogical logic. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Retrieved from: http://plato.stanford.edu/entries/logic-dialogical.
  18. Krabbe, E. C. (1982). Studies in dialogical logic. Rijksuniversiteit, Gröningen: PhD.Google Scholar
  19. Krabbe, E. C. (1985). Formal systems of dialogue rules. Synthese, 63, 295–328.CrossRefGoogle Scholar
  20. Krabbe, E. C. (2006). Dialogue logic. In D. Gabbay & J. Woods (Eds.), Handbook of the history of logic (Vol. 7, pp. 665–704). Amsterdam: Elsevier.Google Scholar
  21. Lorenz, K. (1970). Elemente der Sprachkritik. Eine Alternative zum Dogmatismus und Skeptizismus in der Analytischen Philosophie. Frankfurt: Suhrkamp.Google Scholar
  22. Lorenz, K. (2001). Basic objectives of dialogical logic in historical perspective. Synthese, 127, 255–263.Google Scholar
  23. Lorenz, K. (2010a). Logic, language and method: On polarities in human experiences. Berlin/New York: De Gruyter.Google Scholar
  24. Lorenz, K. (2010b). Philosophische Variationen: Gesammelte Aufsätze unter Einschluss gemeinsam mit Jürgen Mittelstrass geschriebener Arbeiten zu Platon und Leibniz. Berlin/New York: De Gruyter.Google Scholar
  25. Lorenz, K., & Lorenzen, P. (1978). Dialogische Logik. Damstadt: Wissenschaftliche Buchgesellschaft.Google Scholar
  26. Marion, M. (2006). Hintikka on Wittgenstein: From language games to game semantics. Acta Philosophica Fennica, 78, 223–242.Google Scholar
  27. Marion, M., & Rückert, H. (2015). Aristotle on universal quantification: A study from the perspective of game semantics. History and Philosophy of Logic, 37(3), 201–209.CrossRefGoogle Scholar
  28. Martin-Löf, P. (1984). Intuitionistic type theory. Notes by Giovanni Sambin of a series of Lectures given in Padua, June 1980. Naples: Bibliopolis.Google Scholar
  29. Martin-Löf, P. (2006). 100 Years of Zermelo’s axiom of choice: What was the problem with it? The Computer Journal, 49(3), 345–350.CrossRefGoogle Scholar
  30. Poincaré, H. (1905). La Valeur de la Science. Paris: Flammarion.Google Scholar
  31. Poincaré, H. (2014). The value of science, science and method. Online edition, Adelaide: University of Adelaide.Google Scholar
  32. Rahman, S., & Clerbout, N. (2013). Constructive type theory and the dialogical approach to meaning. The Baltic International Yearbook of Cognition, Logic and Communication: Games, Game Theory and Game Semantics, 11, 1–72.Google Scholar
  33. Rahman, S., & Clerbout, N. (2015). Constructive type theory and the dialogical turn: A new approach to Erlangen constructivism. In J. Mittelstrass & C. von Bülow (Eds.), Dialogische Logik (pp. 91–148). Münster: Mentis.Google Scholar
  34. Rahman, S., & Keiff, L. (2005). On How to be a Dialogician. In D. Vanderveken (Ed.), Logic, thought and action (pp. 359–408). Dordrecht: Kluwer.CrossRefGoogle Scholar
  35. Rahman, S., & Keiff, L. (2010). La Dialectique entre logique et rhétorique. Revue de métaphysique et de morale, 66(2), 149–178.CrossRefGoogle Scholar
  36. Rahman, S., & Redmond, J. (2016). Armonía Dialógica: tonk, Teoría Constructiva de Tipos y Reglas para Jugadores Anónimos. (Dialogical Harmony: Tonk, constructive type theory and rules for anonymous players). Theoria. An International Journal for Theory, History and Foundations of Science, 31(1), 27–53.Google Scholar
  37. Rahman, S., Clerbout, N., & Keiff, L. (2009). On dialogues and natural deduction. In G. Primiero & S. Rahman (Eds.), Acts of knowledge: History, philosophy and logic: essays dedicated to Göran Sundholm (pp. 301–336). London: College Publications.Google Scholar
  38. Rahman, S., McConaughey, Z., & Crubellier, M. (2015). A dialogical framework for Aristotle’s syllogism. Work in progress.Google Scholar
  39. Rahman, S., McConaughey, Z., Klev, A., & Clerbout, N. (2018). Immanent reasoning. A Plaidoyer for the play level. Dordrecht: Springer.Google Scholar
  40. Ranta, A. (1988). Propositions as games as types. Syntese, 76, 377–395.CrossRefGoogle Scholar
  41. Ranta, A. (1994). Type-theoretical grammar. Oxford: Clarendon Press.Google Scholar
  42. Redmond, J., & Rahman, S. (2016). Armonía Dialógica: tonk Teoría Constructiva de Tipos y Reglas para Jugadores Anónimos. Theoria, 31(1), 27–53.CrossRefGoogle Scholar
  43. Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay, & F. Guenthner. (Ed.), Handbook of Philosophical Logic, 3, 471–506. Dordrecht: Reidel.Google Scholar
  44. Sundholm, G. (1997). Implicit epistemic aspects of constructive logic. Journal of Logic, Language and Information, 6(2), 191–212.CrossRefGoogle Scholar
  45. Sundholm, G. (1998). Inference versus consequence. In T. Childers (Ed.), The logica yearbook 1997 (pp. 26–36). Prague: Filosofía.Google Scholar
  46. Sundholm, G. (2001). A Plea for logical Atavism. In O. Majer (Ed.), The Logica yearbook 2000 (pp. 151–162). Prague: Filosofía.Google Scholar
  47. Sundholm, G. (2009). A Century of judgement and inference, 1837–1936. Some strands in the development of logic. In L. Haaparanta (Ed.), The development of modern logic (pp. 263–317). Oxford: Oxford University Press.Google Scholar
  48. Sundholm, G. (2012). Inference versus consequence revisited: Inference, conditional, implication. Syntese, 187, 943–956.CrossRefGoogle Scholar
  49. Sundholm, G. (2013). Containment and variation. Two strands in the development of analyticity from Aristotle to Martin-Löf. In M. van der Schaar (Ed.), Judgment and epistemic foundation of logic (pp. 23–35). Dordrecht: Springer Netherlands.Google Scholar
  50. Sundholm, G. (2016). Independence friendly language is first order after all? Logique et Analyse, forthcoming.Google Scholar
  51. Zermelo, E. (1904). Neuer Beweis, dass jede Menge Wohlordnung werden kan (Aus einem an Hern Hilbert gerichteten Briefe). Mathematische Annalen, 59, 514–516.CrossRefGoogle Scholar
  52. Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre, I. Mathematische Annalen, 65, 261–281.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UMR 8163 - STL-Savoirs Textes Langage Université de Lille 3LilleFrance

Personalised recommendations