Advertisement

Avicenna and Number Theory

  • Pascal CrozetEmail author
Chapter
  • 214 Downloads
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 43)

Abstract

Among the four mathematical treatises that Avicenna takes care to place within his philosophical encyclopaedia (al-Shifā’), the one he devotes to arithmetic is undoubtedly the most singular. Contrary to the treatise on geometry, which differs little from its Euclidean model, the philosopher takes as his point of departure the treatise of Nicomachus of Gerase, but modifies its spirit to incorporate results from the many disciplines which were dealing with numbers: Euclidean Theory of numbers, Nicomachean Aritmāṭīqī, Indian reckoning, Ḥisāb, Algebra, etc. We would like to show how Avicenna, taking note of the changes in the mathematics of his time and led by a philosophical questioning about the nature of the disciplines, proposes here one of the very few texts that gives to Theory of numbers a synthetic image, gathering the themes of mathematical research for the next centuries.

References

  1. Al-Baghdādī (1985). Al-Takmila fī al-ḥisāb. ed. Aḥmad Salīm Sa‘īdān, Ma‘had al-makhṭūṭāt al-‘arabiyya, Kuwait.Google Scholar
  2. Crozet, P. (2002). “Aritmetica”, Storia della Scienza (Vol. 3). In R. Rashed (Ed.), La civiltà islamica (pp. 498–506). Rome: Istituto della Enciclopedia Italiana.Google Scholar
  3. Ibn Sīnā. (1975). Al-Shifā’ – al-Fann al-thānī fī al-riyāḍiyāt – al-Ḥisāb, éd. ‘Abd al-Ḥamīd Luṭfī Maẓhar, al-Hay’a al-miṣriyya al-ʽāmma li-l-kitāb, Cairo.Google Scholar
  4. Kutsch, W. (1959). Ṯābit b. Qurra’s Arabische Übersetzung der Ἀριθμητιχὴ Εὶσαγωή des Nikomachos von Gerasa zum Esrten Mal Herausgegeben. Recherches publiées sous la direction de l’Institut de lettres orientales de Beyrouth, tome IX, Imprimerie Catholique, Beyrouth.Google Scholar
  5. Nicomaque de Gérase. (1978). Introduction arithmétique. Vrin, Paris: Janine Bertier.Google Scholar
  6. Rashed, R. (1984). Mathématiques et philosophie chez Avicenne. In Jean Jolivet & R. Rashed (Eds.), Études sur Avicenne (pp. 29–39). Paris: Editions du CNRS.Google Scholar
  7. Rashed, R. (1994). The development of Arabic mathematics: Between arithmetic and algebra. Boston/Dordrecht: Boston Studies in Philosophy of Science, Kluwer Academic Publishers.Google Scholar
  8. Sesiano, J. (1996). Un traité médiéval sur les carrés magiques. Lausanne: Presses polytechniques et universitaires romandes.Google Scholar
  9. Sesiano, J. (2004). Les carrés magiques dans les pays islamiques. Lausanne: Presses polytechniques et universitaires romandes.Google Scholar
  10. Woepcke, F. (1863). Mémoire sur la propagation des chiffres indiens. Journal asiatique, 6e série, I-27–79, 234–290, 442–520, pp. 501–502.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS SPHERE, Université Paris 7ParisFrance

Personalised recommendations