Enthymemathical Proofs and Canonical Proofs in Euclid’s Plane Geometry

  • Abel Lassalle-CasanaveEmail author
  • Marco Panza
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 43)


Since the application of Postulate I.2 in Euclid’s Elements is not uniform, one could wonder in what way should it be applied in Euclid’s plane geometry. Besides legitimizing questions like this from the perspective of a philosophy of mathematical practice, we sketch a general perspective of conceptual analysis of mathematical texts, which involves an extended notion of mathematical theory as system of authorizations, and an audience-dependent notion of proof.


  1. Aristóteles [Rhet]. (1926). Art of Rethoric (J. H. Freese, Trans.). Cambridge, MA: Loeb Classical Library 193, Harvard Univ. Press.Google Scholar
  2. Avigad, J., Dean, E., & Mumma, J. (2009). A formal system for Euclid’s elements. Review of Symbolic Logic, 2(4), 700–768.CrossRefGoogle Scholar
  3. Barrow, I. (1683). Lectiones Habita in Scholis Publicis Academiæ Cantabrigiensis An. Dom, M.DC.LXIV, Typis J. Playford, pro G. Wells in Cœmenterio D. Pauli, Londini.Google Scholar
  4. Barrow, I. (1734). The usefulness of Mathematical Learning […]. Printed for S. Austin at the Angel and Bible in St. Paul’s Church-yard, London.Google Scholar
  5. Euclid. (1883–1888). Elementa, vols. I–IV de Euclidi Opera Omnia. B. G. Teubneri, Lipsiæ, Edited by I. L. Heiberg and H. Menge. vols. 8 + suppl. 1. New edition by E. Stamatis.Google Scholar
  6. Euclid [EEH]. (1926). The thirteen books of the elements (Translated with introduction and commentary by Sir Thomas L. Heath) (2nd ed., Vol. 3). Cambridge: Cambridge University Press.Google Scholar
  7. Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner.Google Scholar
  8. Lassalle Casanave, A. (2008). Entre la retórica y la dialéctica. Manuscrito, 31(1), 11–18.Google Scholar
  9. Lasalle Casanave, A. (2006). Matemática elemental, cálculo y normatividad. O que nos faz pensar, 20, 67–72.Google Scholar
  10. Lassalle Casanave, A., & Panza, M. (2012). Sobre el significado del Postulado 2 de los Elementos. Notae Philosophicae Scientiae Formalis, 1(2)
  11. Lo Bello, A. (2003). The commentary of Albertius Magnus on Book I of Euclid’s elements of geometry. Boston-Leyden: Brill Academic Publishers.Google Scholar
  12. Mancosu, P. (Ed.). (2008). The philosophy of mathematical practice. Oxford: Oxford University Press.Google Scholar
  13. Mancosu, P. (2009). ‘Style’ in mathematics. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (First published Jul 2, 2009)
  14. Manders, K. (2008). The Euclidean diagram. In: P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). Oxford: Oxford University Press.Google Scholar
  15. Mumma, J. (2006). Intuition formalized: Ancient and modern methods of proof in elementary geometry. Ph.D. thesis, Carnegie Mellon University.Google Scholar
  16. Miller, N. (2007). Euclid and his twentieth century rivals: Diagrams in the logic of Euclidean geometry. Stanford CSLI Publications.Google Scholar
  17. Norman, J. (2006). After Euclid. Visual reasoning and the epistemology of diagrams. Stanford CSLI Publications.Google Scholar
  18. Panza, M. (2012). The twofold role of diagrams in Euclid’s plane geometry. Synthese, 186(2012), 55–102.CrossRefGoogle Scholar
  19. Proclus [CEELF]. (1873). In primum Euclidis Elementorum librum commentarii. Teubner, Lipsi. Ex recognitione G. Friedlein.Google Scholar
  20. Rapp, C. (2010). Aristotle’s Rhetoric. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy (First published May 2, 2002; substantive revision Feb 1, 2010).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UFBA, CNPqSalvadorBrazil
  2. 2.IHPST-CNRS, Université Paris 1ParisFrance
  3. 3.Chapman UniversityOrange (CA)USA

Personalised recommendations