Advertisement

Some Reasons to Reopen the Question of the Foundations of Probability Theory Following Gian-Carlo Rota

  • Carlos LoboEmail author
Chapter
  • 200 Downloads
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 43)

Abstract

Roshdi Rashed’s work illustrates perfectly what can be a conscious and cautious practice of reflection, with the purpose of setting history of science (and mathematics) on renewed and deeper grounds (See the introduction, Problems of method: history of science between history and epistemology, in Classical Mathematics from Al-Khwarizmi to Descartes , 2014, (Rashed 2014).). This entails the methodical operations that he enumerates, such as enlargement towards undermined or ignored traditions (Chinese, Arab, Indian, etc.), careful and reasoned decompartmentalization of disciplines, correlative changes of periodization (without which the critique of scientific ideology and ideology of scientists would risk of falling back into some counter-ideological history, particular or general). (Europeocentrism for instance is twofold: promotion of the ambiguous and disputable notion of “western science” and ignorance or “minorization” of the contributions of non-western traditions. Cf. (Rashed 1984) and appendices in The Notion of Western Science: “Science as a Western Phenomenon” and “Periodization in Classical Mathematics” (Rashed 2014).) Among mathematicians, Gian-Carlo Rota is certainly both exceptional and, for this reason, exemplary. By choosing this perspective as a tribute, I hope that Roshdi Rashed will consider my comments not too unworthy. For any philosopher of science not insensitive to history of science, and for any historian not completely allergic to philosophical reflection, studying Rota’s contribution in the fields of logic and phenomenology reveals itself instructive and fruitful. Contrary to dominant trends amongst his colleagues, in his own way, Rota showed a strong and continuous interest in logic, history of science and philosophy.

Notes

Acknowledgments

I am grateful to them more than I can say to all the friends and colleagues, who take the time to read and comment this paper. This paper has benefited from the careful readings and/or the criticisms of Luigi Accardi, Françoise Balibar, Franck Jedrzejewski, Pierre Kerszberg, Didier Vaudène, Mark van Atten and Maria Villela-Petit da Penha. Last but not least, I am very thankful to Marian Hobson who helped greatly to convert my prose into proper English. Thank you to Pierre Giai-Levra who gave a final, generous and acute look at the last version of this paper. Remaining mistakes and shortcomings are attributable to me. I am also very grateful to Hassan Tahiri who organized this unforgettable conference in Lisbon at the Centro de Filosofia das Ciências, for his patience in waiting for the final version of this paper.

References

  1. Accardi, L. (1981a, b). Topics in quantum probability, Physics Report 77, 169–192.Google Scholar
  2. Accardi, L. (1982a). Foundations of quantum probability. Rendiconti del Seminario Matematico dell’Università e del Plitecnico, Torino, 1982, 249–273.Google Scholar
  3. Accardi, L. (1982b). Some Trends and Problems in Quantum Probability, Quantom probability and applications to the quantum theory of irreversible processes. In: L. Accardi, A. Frigerio, & V. Gorini (Eds.), Proceedings of the second Conference: Quantum Probability and applications to the quantum theory of irreversible, Processes, 6–11, 9 (1982), Villa Mondragone, Rome, Springer, 1–19.Google Scholar
  4. Accardi, L. (1993). Urns and chameleons: Two metaphors for two different types of measurements. Journal of Physics: Conference Series, 459.Google Scholar
  5. Accardi, L. (1999). The quantum probabilistic approach to the foundations of quantum theory: Urns and chamaleons, in Language, Quantum, Music, M. L. Dalla Chiara, R. Giuntini, & F. Laudisa, (Eds.), Synthese Library in Epistemology, Logic, Methodology and Philosophy of science. Berlin: Springer. Google Scholar
  6. Accardi, L. (2003). Urns and chameleons, a dialogue about reality, the laws of chance and quantum theory. English version (Out of print).Google Scholar
  7. Accardi, L. (2010). Quantum probability: New perspectives for the laws of chance. Milan Journal of Mathematics, 78(2010), 481–502.CrossRefGoogle Scholar
  8. Birkhoff, G. (1949). Théorie et applications des treillis, in Annales de l’Institut Henri Poincaré, Tome 11, n° 5 (1949), p. 227–240, Paris: Gauthier-Villars.Google Scholar
  9. Bitbol, Michel. (2009). La structure quantique de la connaissance individuelle et sociale, in Theorie quantique et sciences humaines. Paris: CNRS Editions.CrossRefGoogle Scholar
  10. Buchsbaum, D. A. (2001). Resolution of weyl modules: The rota touch. In H. Crapo & D. Senato (Eds.), Algebraic combinatorics and computer science a tribute to gian-carlo rota (pp. 97–100). New York, Dordrecht, London: Springer.CrossRefGoogle Scholar
  11. Caramello, O. (2010). The unification of Mathematics via Topos Theory, 20 June 2010, https://arxiv.org/abs/1006.3930v1
  12. Caratheodory, C. (1948). Vorlesungen über reelle Funktionen, (1st ed, Berlin: Leipzig 1918), 2nd ed., New York: Chelsea.Google Scholar
  13. Cartier, P. (1972). On the structure of free Baxter algebras. Advances in Mathematics, 9(2), 253–265.CrossRefGoogle Scholar
  14. Damiani, E., D’Antona, O., Marra, V., Palombi, F. (Eds.) (2009). From Combinatorics to Philosophy, The Legacy of G.-C. Rota, Dordrecht Heidelberg London New York: Springer.Google Scholar
  15. Dhombres, J. (2003). Reynolds and averaging operators. In Gian-Carlo Rota, On Analysis and Probability, Selected Papers: Birkhaüser.Google Scholar
  16. Accardi L., Fedullo, A. (1981). On the statistical meaning of complex numbers in quantum theory. Lettere al Nuovo Cimento 34, 161–172. University of Salerno preprint May (1981).Google Scholar
  17. Halmos, P. (1950). Measure theory. New York: D. van Nostrand and Co.CrossRefGoogle Scholar
  18. Halmos, P. (1956). The basic concepts of algebraic logic. In: American mathematical Monthly, 63, 363–387.Google Scholar
  19. Husserl, E. (1950a). Ideen zur einer reine Phänomenologie und phänomenologische Philosophie, ed. W. Biemel, Husserliana, Band III/1. Den Haag: Martinus Nijhoff.Google Scholar
  20. Husserl, E. (1950b). Die Krisis der europäischen Wissenschaften un, die transzendentale Phänomenologie, Eine Einleitung in die phanomenologische Philosophie (Ed.) Walter Biemel. Husserliana, Band VI. The Hague: Martinus Nijhoff.Google Scholar
  21. Husserl, E. (1969). Formal and Transcendental Logic, English tr. Dorion Cairn, Den Haag: Martinus Nijhoff.Google Scholar
  22. Husserl, E. (1970). The crisis of european sciences and transcendental phenomenology, an introduction to phenomenology. tr David Carr. Evanston: Northwestern University Press.Google Scholar
  23. Husserl, E. (1984). Logische Untersuchungen, Zweiter Band, Zweiter Teil, Untersuchungen zur Phänomenologie und Theorie der Erkenntnis, Text der 1 und der 2 Auflage, hsg. Ursula Panzer, Husserliana Band XIX/2, Martinus Nijhoff Pub., Kluwer, The Hague, Boston, Lancaster.Google Scholar
  24. Husserl, E. (1988). Vorlesungen über Ethik und Wertlehre, 1908–1914. In U. Melle (Ed.), Husserliana XXVIII, Dordrecht, Boston, London: Kluwer.Google Scholar
  25. Husserl E. (2001). Logical Investigations, edited by Dermot Moran and translated by J. N. Findlay from the second German edition, London, New York, Routledge.Google Scholar
  26. Husserl, E. (2009). Leçons sur l’éthique et la théorie de la valeur, French. Transl. P. Ducat, P. Lang, C. Lobo, Épiméthée: P.U.F.Google Scholar
  27. Jedrzejewski, F. (2009). Modèles aléatoires et physique probabiliste. Paris: Berlin, New York, Springer.CrossRefGoogle Scholar
  28. Johnstone, P. T. (1983). The point of pointless topology. In Bulletin (New Series) of the American Mathematical Society, Volume 8, Number 1, January, 1983. 41–53.Google Scholar
  29. Kolmogorov, A. N. (1956). Foundations of the theory of probability, 2nd English ed. Tr. N. Morrison, Un. Of Oregon, New York: Chelsea Publishing Company.Google Scholar
  30. Lobo, C. (2000). Le phénoménologue et ses exemples. Étude sur le rôle de l’exemple dans la constitution de la méthode et l’ouverture du champ de la phénoménologie transcendantale, Paris: Kimé.Google Scholar
  31. Lobo, C. (2006). Temporalité et remplissement, in Annales de Phénoménologie. Beauvais: APPP.Google Scholar
  32. Lobo, C. (2009). De la phénoménologie considérée comme un métier, L’Œuvre du phénomène, P. Kerszberg, A. Mazzu, A. Schnell (Eds.), (pp. 51–70) Bruxelles: Ousia.Google Scholar
  33. Lobo, C. (2010). The husserlian project of reform of logic and individuation. In The 40th Annual Meeting of the Husserl Circle, New School for Social Research, New York, 22 June 2010, www.husserlcircle.org/HC_NYC_Proceedings.pdf, pp. 86–103.
  34. Lobo, C. (2012). L’idée platonicienne d’eidos selon Husserl, Les interprétations des Idées platoniciennes dans la philosophie contemporaine. In A. Mazzu et S. Delcomminette (éds.) Paris: Vrin. 172–185.Google Scholar
  35. Moran, P. A. P. (1968). An introduction to probability theory. Oxford: Clarendon Press.Google Scholar
  36. Mugur-Schachter, M. (1994). Quantum probabilities, kolmogorov probabilities, and informational probabilities. International Journal of Theoretical Physics, 33(1), 1994.CrossRefGoogle Scholar
  37. Mugur-Schachter, M. (2002). Objectivity and descriptional relativities. In Quantum Mechanics and other Fields of Science, Foundation of Science (Vol 7; N 1–2), 2002. Dordrecht, Kluwer: 1–86.Google Scholar
  38. Mugur-Schachter, M. (2009). Infra-Quantum Mechanics and conceptual invalidation of Bell’s theorem on locality. The principles of a revolution of epistemology revealed in the descriptions of microstates (French text with English summary) (Manuscript): http://arxiv.org/abs/0903.4976.
  39. Mugur-Schachter, M. (2014). On the Concept of Probability. In Mathematical Structures in Computer Science (pp. 1–91) London: Cambridge University Press.Google Scholar
  40. Neyman, Jerzi. (1950). First course in probability and statistics. New York: Henry Holt and Company.Google Scholar
  41. Nottale, N. (2004). The theory of scale relativity: Non-differentiable geometry and fractal space-time. In Computing Anticipatory Systems. CASYS’03—Sixth International Conference (Liège, Belgium, 11–16 August 2003).Google Scholar
  42. Okada, M. (1998). Husserl and hilbert on completeness and husserl’s term rewrite-based theory of multiplicity. In 24th International Conference on Rewriting Techniques and Applications (RTA’ 13), ed. Femke van Raamsdonk, pp. 4–19.Google Scholar
  43. Okada, M. (2000). Husserl’s ‘Concluding Theme of the Old Philosophico-Mathematical Studies’ and the Role of the Notion of Multiplicity (Draft version of Paris Conference, of the 22 of March, 2000, Rencontre sur la logique et la philosophie de la science).Google Scholar
  44. Olav, K. (2002). Foundations of modern probability. New York, London: Springer.Google Scholar
  45. Palombi, F. (2003). The star & the whole: Gian-carlo rota on mathematics and phenomenology. Torino: Bollati Boringhieri.Google Scholar
  46. Pitovsky, I. (1989). Quantum probability—quantum logic. Dordrect, London: Springer.Google Scholar
  47. Pitowsky, I. (2005). Quantum Mechanics as a Theory of Probability. Department of Philosophy.http://edelstein.huji.ac.il/staff/pitowsky/.
  48. Rashed, R. (1984). Entre Arithmétique et Algèbre. Recherches sur l’Histoire des Mathématiques Arabes. Paris: Les Belles Lettres.Google Scholar
  49. Rashed, R. (2014). Classical Mathematics from Al-Khwārizmī to Descartes, tr. M. H. Shank, Culture and Civilization in the Middle East Series, London: Routledge.Google Scholar
  50. Rényi, A. (1970). Foundations of probability. New York: Dover.Google Scholar
  51. Rota, G-C. (1960) Une généralisation de l’espérance mathématique conditionnelle qui se présente dans la théorie statistique de la turbulence. Paris: C. R. Académie des Sciences, pp. 624–626.Google Scholar
  52. Rota, G.-C. (1969). Baxter algebras and combinatorial identities. I, II, Bull. Amer. Math. Soc. 75, 325.Google Scholar
  53. Rota, G.-C. (1973a). The valuation ring of a distributive lattice. In Proceedings of the University of Houston, Lattice Theory Conference (Houston, Tex., 1973) Department of Mathematics, University Houston, Houston, Tex.: 574–628.Google Scholar
  54. Rota, G.-C. (1973b). Edmund husserl and the reform of logic in D. In D. Carr & E. S. Casey (Eds.), Exploraitions in phenomenology (pp. 299–305). The Hague: Nijhoff.CrossRefGoogle Scholar
  55. Rota, G.-C. (1978). in N. Metropolis, Gian-Carlo Rota, Volker Strehl and Neil White, Partitions into Chains of a Class of Partially Ordered Sets, in Proceedings of the American Mathematical Society, Volume 71, Number 2, September (1978), 193–196.Google Scholar
  56. Rota, G.-C. (1981). Rota’s Preface. In P. J., Davis & R. Hersh (Eds.), The Mathematical Experience, (pp. i–xix) Switzerland: Birkhaüser.Google Scholar
  57. Rota, G.-C. (1985). Mathematics. Philosophy and artificial intelligence, a dialogue with Gian-Carlo Rota and David Sharp, Los Alamos Science, spring/summer, 1985, 93–104.Google Scholar
  58. Rota, G.-C. (1986a). In memoriam of Stan Ulam-the Barrier of Meaning. Evolution, Games and Learning (Los Alamos, N. M., 1985). Phys. D 22 (1986), no. 1–3, 1–3.Google Scholar
  59. Rota, G-C. (1986b). Remarks on Artificial Intelligence. (Italian) Boll. Un. Mat. Ital. A (6)5 (1986), no. 1, 1–12.Google Scholar
  60. Rota, G.-C. (1987a). The lost Café. Stanislaw Ulam 1909–1984. Los Alamos Sci. No. 15, Special Issue (1987), 23–32.Google Scholar
  61. Rota, G.-C. (1987b). Stanley Ulam, Conversations with Rota. Transcribed and edited by Françoise Ulam. Stanislaw Ulam 1909–1984. Los Alamos Sci. No. 15, Special Issue (1987), 300–312Google Scholar
  62. Rota, G.-C. (1988). David Sharp, Robert Sokolowski: 1988, Syntax, semantics, and the problem of the identity of mathematical objects. Philosophy of Science, 55(3), 376–386.CrossRefGoogle Scholar
  63. Rota, G-C. (1989a). The Barrier of Meaning. In Memoriam: Stanislaw Ulam. Notices Amer. Math. Soc. 36(2), 141–143.Google Scholar
  64. Rota, G.-C. (1989b). Remarks on Artificial Intelligence. Translated from the Italian by A. Nikolova. Fiz.-Mat. Spis. Bügar. Akad. Nauk. 31(64) (1989), no. 1: 19–27.Google Scholar
  65. Rota, G.-C. (1990a). Mathematics and philosophy: History of a Misunderstanding, in Boll. Un. Mat. Ital. A (7) 4 (1990), no. 3: 295–307.Google Scholar
  66. Rota, G.-C. (1990b). Les ambiguïtés de la pensée mathématique. Gaz. Math. 45(1990), 54–64.Google Scholar
  67. Rota, G-C. (1990c). The pernicious Influence of Mathematics upon Philosophy. New Directions in the Philosophy of Mathematics (New Orleans, LA, 1990). Synthese 88 (1991), no. 2: 165-178.Google Scholar
  68. Rota, G.-C. (1991). Mathematics and the task of phenomenology. In T. Seebohm, D. Follesdal, & J. N. Mohanty (Eds.), Phenomenology and the formal sciences. Dordrecht: Kluwer.Google Scholar
  69. Rota, G.-C. (1995). Baxter operators, an introduction. In J. P. S. Kung (Ed.), Gian-carlo rota on combinatorics, introductory papers and commentaries. Birkhäuser: Contemp. Mathematicians, Boston.Google Scholar
  70. Rota, G.-C. (1997a). Memory of Garrett Birkhoff: The many lives of Lattice Theory, Published in the Notices of the AMS, Volume 44, Number 11, (1997): 1440–1445.Google Scholar
  71. Rota, G.-C. (1997b). Indiscrete thoughts. Boston, Basel, Berlin: Birkhäuser.CrossRefGoogle Scholar
  72. Rota, G.-C. (1998a). Ten mathematics problems I will never solve, Invited address at the joint meeting of the American Mathematical Society and the Mexican Mathematical Society, Oaxaca, Mexico, Dec. 6, 1997. DMV Mittellungen Heft 2, 45.Google Scholar
  73. Rota, G.-C. (1998b). Introduction to Heidegger’s Being and Time (draft) Gian-Carlo Rota, ed. and tr. Mark van Atten, Version Fall.Google Scholar
  74. Rota, G.-C. (2000). Ten remarks on husserl and phenomenology. In O. Wiegand, R. J. Dostal, L. Embree, J. Kockelmans, & J. N. Mohanty (Eds.), Phenomenology on Kant, German Idealism, Hermeneutics and Logic. Dordrecht: Kluwer.Google Scholar
  75. Rota, G.-C. (2001). Twelve problems in probability no one likes to bring up, Fubini Lectures, in Algebraic Combinatorics and Computer Science, Springer, 2001, pp. 25–96.Google Scholar
  76. Rota, G-C., Smith, D. (1972). Fluctuation theory and baxter algebras. Istituto Nazionale di Alta Matematica IX, 179 (1972).Google Scholar
  77. Rota, G.-C. & Backlawski, K. (1979). An Introduction to Probability and Random Processes. http://www.ellerman.org/wp-content/uploads/2012/12/Rota-Baclawski-Prob-Theory-79.pdf.
  78. Rota, G.-C., & Ellerman, D. (1978). A Measure-theoretic approach to logical quantification. Rend. Sem. Mat. Univ. Padova, 59(1978), 227–246.Google Scholar
  79. Rota, G.-C., Rota, G.-C., Sharp, D., Sokolowski, R. (1988). Syntax, semantics, and the problem of the identity of mathematical objects. Philosophy of Science, 55, 376–386.Google Scholar
  80. Rota, G-C., Kac, M., Schwartz, J. T. (1992). Discrete Thoughts. Essays on Mathematics, science, and philosophy. Scientists of Our Time. Birkhauser, Boston, Mass., 1986. xii + 264 pp. Quoted from the edition of 1992.Google Scholar
  81. Rota, G.-C., & Klain, D. A. (1997). Introduction to Geometric Probability. A. Luigi (Ed.) Radicati di Brozolo. Cambridge: Cambridge University Press.Google Scholar
  82. Savage, L. J. (1972). The foundations of statistics. New York: Dover.Google Scholar
  83. Segal, I. E. (1947). Postulates for general quantum mechanics. Annals of Mathematics, 48, 930–948.CrossRefGoogle Scholar
  84. Uzan, P. (2013). Conscience et physique quantique, Mathesis. Paris: Vrin.Google Scholar
  85. van Atten M. (2015). Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer, Switzerland: Springer.Google Scholar
  86. von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik, Springer.Google Scholar
  87. von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics, tr. Robert T. Beyer, Princeton University Press.Google Scholar
  88. von Neumann, J. (1981). Continuous geometries with a transition probability. In Halperin I. (Ed.), Memoirs of the American Mathematical Society, 34.Google Scholar
  89. von Neumann, J., & Birkhoff, G. (1936). The logic of quantum mehanics. In Ann. Math., Vol. 37: 823–843.—Reprinted in The Neumann Compendium, F. Brody, T. Vamos, World Scientific Series in 20th Century Mathematics, Vol. 1. New Jersey, Singapore, London, 1995: 105–125.Google Scholar
  90. Weyl, H. (1968). Gesammelte Abhandlungen. Band, III K. Chandrasekharan (Ed.), Berlin: Springer Verlag.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College International de PhilosphieParisFrance

Personalised recommendations