Advertisement

The Piezoelectric Medium and Piezoelectric Sensitivity

  • Vitaly Yu. TopolovEmail author
  • Christopher R. Bowen
  • Paolo Bisegna
Chapter
  • 504 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 271)

Abstract

The piezoelectric effect and related electromechanical properties are described, and examples of modern piezoelectric materials and their sensitivity are considered. Full sets of electromechanical constants of various piezoelectric materials are given for comparison. Examples of electromechanical coupling factors and figures of merit are also considered to show links between the piezoelectric sensitivity and these parameters. Among materials exhibiting the important piezoelectric properties, of interest are domain-engineered relaxor-ferroelectric single crystals, poled ferroelectric ceramics and piezo-active composites based on ferroelectrics. The importance of the piezoelectric sensitivity in piezotechnical applications is briefly discussed.

References

  1. 1.
    Zheludev IS (1971) Physics of crystalline dielectrics. Vol 2: Electrical properties. Plenum, New YorkCrossRefGoogle Scholar
  2. 2.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, New York, TorontoGoogle Scholar
  3. 3.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer, Boston, Dordrecht, LondonGoogle Scholar
  4. 4.
    Tichý J, Erhart J, Kittinger E, Přívratská J (2010) Fundamentals of piezoelectric sensorics. Mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  5. 5.
    Kholkin AL, Pertsev NA, Goltsev AV (2008) Piezoelectricity and crystal symmetry. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York, pp 17–38CrossRefGoogle Scholar
  6. 6.
    Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam, London, New York, TorontoGoogle Scholar
  7. 7.
    Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric device-making. Vol 1: Physics of ferroelectric ceramics. Radiotekhnika, Moscow (in Russian)Google Scholar
  8. 8.
    Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  9. 9.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  10. 10.
    Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)Google Scholar
  11. 11.
    Turik AV (1970) Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3 with a laminar domain structure. Sov Phys Solid State 12:688–693Google Scholar
  12. 12.
    Aleshin VI (1990) Domain-orientation contribution into constants of ferroelectric polydomain single crystal. Zh Tekh Fiz 60:179–183 (in Russian)Google Scholar
  13. 13.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Newnham RE (2005) Properties of materials. Anisotropy, symmetry, structure. Oxford University Press, New YorkGoogle Scholar
  15. 15.
    Berlincourt DA, Cerran DR, Jaffe H (1964) Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason W (ed) Physical acoustics. Principles and methods. Vol 1: Methods and devices. Part A. Academic Press, New York, London, pp 169–270Google Scholar
  16. 16.
    Bowen CR, Topolov VYu, Kim HA (2016) Modern piezoelectric energy-harvesting materials. Springer, SwitzerlandCrossRefGoogle Scholar
  17. 17.
    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X (2015) Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review. Prog Mater Sci 68:1–66CrossRefGoogle Scholar
  18. 18.
    Petrov VM (1987) Effect of intensification of piezoelectric sensitivity of textures at the converse piezoelectric effect. Zh Tekh Fiz 57:2273–2275 (in Russian)Google Scholar
  19. 19.
    Hillenbrand J, Sessler GM (2004) High-sensitivity piezoelectric microphones based on stacked cellular polymer films (L). J Acoust Soc Am 116:3267–3270CrossRefGoogle Scholar
  20. 20.
    Bowen CR, Topolov VYu (2003) Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater 51:4965–4976CrossRefGoogle Scholar
  21. 21.
    Topolov VYu, Panich AE (2009) Problem of piezoelectric sensitivity of 1–3-type composites based on ferroelectric ceramics. Ferroelectrics 392:107–119CrossRefGoogle Scholar
  22. 22.
    Sirohi J, Chopra E (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11:246–257CrossRefGoogle Scholar
  23. 23.
    Payo I, Hale JM (2011) Sensitivity analysis of piezoelectric paint sensors made up of PZT ceramic powder and water-based acrylic polymer. Sens Actuators A Phys 168:77–89CrossRefGoogle Scholar
  24. 24.
    Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater Chem Phys 97:357–364CrossRefGoogle Scholar
  25. 25.
    Uchino K, Ishii T (2010) Energy flow analysis in piezoelectric energy harvesting systems. Ferroelectrics 400:305–320CrossRefGoogle Scholar
  26. 26.
    Priya S (2010) Criterion for material selection in design of bulk piezoelectric energy harvesters. IEEE Trans Ultrason Ferroelectr Freq Control 57:2610–2612CrossRefGoogle Scholar
  27. 27.
    Iyer S, Venkatesh TA (2014) Electromechanical response of (3–0, 3–1) particulate, fibrous, and porous piezoelectric composites with anisotropic constituents: A model based on the homogenization method. Int J Solids Struct 51:1221–1234CrossRefGoogle Scholar
  28. 28.
    Sherman CH, Butler JL (2007) Transducers and arrays for underwater sound. Springer, New YorkCrossRefGoogle Scholar
  29. 29.
    Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRefGoogle Scholar
  30. 30.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, New YorkGoogle Scholar
  31. 31.
    Blistanov AA, Bondarenko VS, Perelomova NV, Strizhevskaya FN, Chkalova VV, Shaskol’skaya MP (1982) Acoustic crystals. Handbook. Nauka, Moscow (in Russian)Google Scholar
  32. 32.
    Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of ferroelectric phenomena. Nauka, Leningrad (in Russian)Google Scholar
  33. 33.
    Golovnin VA, Kaplunov IA, Malyshkina OV, Ped’ko BB, Movchikova AA (2013) Physical principles, methods of study and applications of piezomaterials. Tekhnosfera, Moscow (in Russian)Google Scholar
  34. 34.
    Luchaninov AG (2002) Piezoelectric effect in non-polar heterogeneous ferroelectric materials. Volgograd State Academy of Architecture and Construction, Volgograd (in Russian)Google Scholar
  35. 35.
    Wada S, Park S-E, Cross LE, Shrout TR (1999) Engineered domain configuration in rhombohedral PZN-PT single crystals and their ferroelectric related properties. Ferroelectrics 221:147–155CrossRefGoogle Scholar
  36. 36.
    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park S-E, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys Part 1 38:5505–5511CrossRefGoogle Scholar
  37. 37.
    Wada S, Muraishi T, Yokoh K, Kakemoto H, Tsurumi T (2007) Preparation of barium titanate crystals with engineered domain configurations by using a new poling method with both an electric field and a uniaxial stress field and their piezoelectric properties. J Korean Phys Soc 51:874–877CrossRefGoogle Scholar
  38. 38.
    Nakamura K, Tokiwa T, Kawamura Y (2002) Domain structures in KNbO3 crystals and their piezoelectric properties. J Appl Phys 91:9272–9276CrossRefGoogle Scholar
  39. 39.
    Erhart J (2011) Domain engineered piezoelectric resonators. In: Pardo L, Ricoto J (eds) Multifunctional polycrystalline ferroelectric materials. Springer, Dordrecht, Heidelberg, New York, London, pp 651–680CrossRefGoogle Scholar
  40. 40.
    Bowen CR, Topolov VYu, Isaeva AN, Bisegna P (2016) Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18:5986–6001CrossRefGoogle Scholar
  41. 41.
    Zheng LM, Huo XQ, Wang R, Wang JJ, Jiang WH, Cao WW (2013) Large size lead-free (Na, K)(Nb, Ta)O3 piezoelectric single crystal: growth and full tensor properties. CrystEngComm 15:7718–7722CrossRefGoogle Scholar
  42. 42.
    Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W (2014) High quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry. CrystEngComm 16:9828–9833CrossRefGoogle Scholar
  43. 43.
    Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties. J Am Ceram Soc 98:1829–1835CrossRefGoogle Scholar
  44. 44.
    Wiesendanger E (1974) Dielectric, mechanical and optical properties of orthorhombic KNbO3. Ferroelectrics 6:263–281CrossRefGoogle Scholar
  45. 45.
    Rouffaud R, Marchet P, Hladky-Hennion A-C, Bantignies C, Pham-Thi M, Levassort F (2014) Complete electroelastic set for the (YXt)-45° cut of a KNbO3 single crystal. J Appl Phys 116:194106CrossRefGoogle Scholar
  46. 46.
    Topolov VYu (2003) Domain wall displacements and piezoelectric activity of KNbO3 single crystals. J Phys: Condens Matter 15:561–565Google Scholar
  47. 47.
    Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811CrossRefGoogle Scholar
  48. 48.
    Cross LE (2008) Relaxor ferroelectrics. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, Heidelberg, pp 131–156Google Scholar
  49. 49.
    Noheda B (2002) Structure and high-piezoelectricity in lead oxide solid solutions. Curr Opin Solid State Mater Sci 6:27–34CrossRefGoogle Scholar
  50. 50.
    Noheda B, Cox DE (2006) Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 70:5–20CrossRefGoogle Scholar
  51. 51.
    Park S-E, Hackenberger W (2002) High performance single crystal piezoelectrics: applications and issues. Curr Opin Solid State Mater Sci 6:11–18CrossRefGoogle Scholar
  52. 52.
    Ye Z-G (2002) Crystal chemistry and domain structure of relaxor piezocrystals. Curr Opin Solid State Mater Sci 6:35–44CrossRefGoogle Scholar
  53. 53.
    Topolov VYu, Ye Z-G (2001) Elastic matching of morphotropic phases in polydomain (1 − x)Pb(Zn1/3Nb2/3)O3xPbTiO3 single crystals. Ferroelectrics 253:71–78CrossRefGoogle Scholar
  54. 54.
    Topolov VYu (2012) Heterogeneous ferroelectric solid solutions. Phases and domain states. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  55. 55.
    Dammak H, Renault A-É, Gaucher P, Thi MP, Calvarin G (2003) Origin of the giant piezoelectric properties in the [001] domain engineered relaxor single crystals. Jpn J Appl Phys Part 1 42:6477–6482CrossRefGoogle Scholar
  56. 56.
    Topolov VYu, Turik AV (2002) An intermediate monoclinic phase and electromechanical interactions in xPbTiO3–(1 − x)Pb(Zn1/3Nb2/3)O3 crystals. Phys Solid State 44:1355–1362CrossRefGoogle Scholar
  57. 57.
    Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283CrossRefGoogle Scholar
  58. 58.
    Davis M (2007) Picturing the elephant: giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J Electroceram 19:23–45CrossRefGoogle Scholar
  59. 59.
    Noheda B, Cox DE, Shirane G, Park S-E, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3–8%PbTiO3. Phys Rev Lett 86:3891–3894CrossRefGoogle Scholar
  60. 60.
    Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475CrossRefGoogle Scholar
  61. 61.
    Zhang R, Jiang W, Jiang B, Cao W (2002) Elastic, dielectric and piezoelectric coefficients of domain engineered 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. In: Cohen RE (ed) Fundamental physics of ferroelectrics. American Institute of Physics, Melville, pp 188–197Google Scholar
  62. 62.
    Liu G, Jiang W, Zhu J, Cao W (2011) Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl Phys Lett 99:162901 CrossRefGoogle Scholar
  63. 63.
    Yin J, Jiang B, Cao W (2000) Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 47:285–291CrossRefGoogle Scholar
  64. 64.
    Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J Mater Sci Lett 21:1877–1879CrossRefGoogle Scholar
  65. 65.
    Huo X, Zhang S, Liu G, Zhang R, Luo J, Sahul R, Cao W, Shrout TR (2013) Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3:Mn single crystals. J Appl Phys 113:074106CrossRefGoogle Scholar
  66. 66.
    Liu X, Zhang S, Luo J, Shrout TR, Cao W (2009) Complete set of material constants of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal with morphotropic phase boundary composition. J Appl Phys 106:074112CrossRefGoogle Scholar
  67. 67.
    Wang F, Luo L, Zhou D (2007) Complete set of elastic, dielectric, and piezoelectric constants of orthorhombic 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal. Appl Phys Lett 90:212903CrossRefGoogle Scholar
  68. 68.
    Zhang R, Jiang B, Jiang W, Cao W (2006) Complete set of elastic, dielectric, and piezoelectric coefficents of 0.93Pb(Zn1/3Nb2/3)O3–0.33PbTiO3 single crystal poled along [011]. Appl Phys Lett 89:242908CrossRefGoogle Scholar
  69. 69.
    He C, Jing W, Wang F, Zhu K, Qiu J (2011) Full tensorial elastic, piezoelectric, and dielectric properties characterization of [011]-poled PZN-9%PT single crystal. IEEE Trans Ultrason Ferroelectr Freq Control 58:1127–1130CrossRefGoogle Scholar
  70. 70.
    Topolov VYu (2010) Comment on “Complete sets of elastic, dielectric, and piezoelectric properties of flux-grown [011]-poled Pb(Mg1/3Nb2/3)O3–(28–32)% PbTiO3 single crystals” [Appl. Phys. Lett. 92, 142906 (2008)]. Appl Phys Lett 96:196101CrossRefGoogle Scholar
  71. 71.
    Topolov VYu, Bowen CR (2011) Inconsistencies of the complete sets of electromechanical constants of relaxor-ferroelectric single crystals. J Appl Phys 109:094107CrossRefGoogle Scholar
  72. 72.
    Hong YK, Moon KS (2005) Single crystal piezoelectric transducers to harvest vibration energy. Proc SPIE Optomechatronic Actuators Manipulation 6048:60480ECrossRefGoogle Scholar
  73. 73.
    Sun C, Qin L, Li F, Wang Q-M (2009) Piezoelectric energy harvesting using single crystal Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–PT) device. J Intell Mater Syst Struct 20:559–568CrossRefGoogle Scholar
  74. 74.
    Moon SE, LeeSQ Lee S-K, Lee Y-G, Yang YS, Park K-H, Kim J (2009) Sustainable vibration energy harvesting based on Zr-doped PMN–PT piezoelectric single crystal cantilevers. ETRI J 31:688–694CrossRefGoogle Scholar
  75. 75.
    Song HJ, Choi YT, Wang G, Wereley NM (2009) Energy harvesting utilizing single crystal PMN–PT material and application to a self-powered accelerometer. J Mech Des 131:091008CrossRefGoogle Scholar
  76. 76.
    Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN–PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638CrossRefGoogle Scholar
  77. 77.
    Ritter T, Geng X, Shung KK, Lopath PD, Park S-E, Shrout TR (2000) Single crystal PZN/PT-polymer composites for ultrasound transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 47:792–800CrossRefGoogle Scholar
  78. 78.
    Dantsiger AY, Razumovskaya ON, Reznitchenko LA, Grineva LD, Devlikanova RU, Dudkina SI, Gavrilyatchenko SV, Dergunova NV, Klevtsov AN (1994) Highly effective piezoceramic materials (handbook). Kniga, Rostov-on-Don (in Russian)Google Scholar
  79. 79.
    Haertling G (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRefGoogle Scholar
  80. 80.
    Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena. Vol 4: piezoelectricity. Gordon and Breach Science Publishers, New York, London, Paris, Montreux, Tokyo, pp 167–176Google Scholar
  81. 81.
    Levassort F, Thi MP, Hemery H, Marechal P, Tran-Huu-Hue L-P, Lethiecq M (2006) Piezoelectric textured ceramics: effective properties and application to ultrasonic transducers. Ultrasonics 44(Suppl 1):e621–e626CrossRefGoogle Scholar
  82. 82.
    Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI (1993) The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140:175–181CrossRefGoogle Scholar
  83. 83.
    Topolov VYu, Turik AV, Chernobabov AI (1994) On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr Rep 39:805–809Google Scholar
  84. 84.
    Turik AV, Topolov VYu (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D Appl Phys 30:1541–1549CrossRefGoogle Scholar
  85. 85.
    Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRefGoogle Scholar
  86. 86.
    Gusakova LG, Poguibko VM, Spiridonov NA, Ishchuk VM, Kisel’ NG (2012) Lead-free nanostructure piezoceramic material based on (K, Na)NbO3. Nanosyst Nanomater Nanotechnol 10:303–312 (in Russian)Google Scholar
  87. 87.
    Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRefGoogle Scholar
  88. 88.
    Chan HLW, Ng PKL, Choy CL (1999) Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites. Appl Phys Lett 74:3029–3031CrossRefGoogle Scholar
  89. 89.
    Borzov PA, Vorontsov AA, Topolov VYu, Brill OE (2016) Piezoelectric performance and features of microgeometry of novel composites based on ferroelectric ZTS-19 ceramics. In: Parinov IA, Chang S-H, Topolov VYu (eds) Proceedings of the 2015 International Conference on Physics, Mechanics of New Materials and Their Applications, devoted to the 100th Anniversary of the Southern Federal University. Nova Science Publishers, New York, pp 115–122Google Scholar
  90. 90.
    Topolov VYu, Bowen CR (2015) High-performance 1–3-type lead-free piezo-composites with auxetic polyethylene matrices. Mater Lett 142:265–268CrossRefGoogle Scholar
  91. 91.
    Chaipanich A (2007) Dielectric and piezoelectric properties of PZT-silica fume cement composites. Curr Appl Phys 7:532–536CrossRefGoogle Scholar
  92. 92.
    Filippov SE, Vorontsov AA, Topolov VYu, Brill OE, Bisegna P, Panich AE (2014) Features of the piezoelectric effect in a novel PZT-type ceramic/clay composite. Ferroelectr Lett Sect 41:82–88CrossRefGoogle Scholar
  93. 93.
    Topolov VYu, Glushanin SV, Bowen CR (2005) Piezoelectric response of porous ceramic and composite materials based on Pb(Zr, Ti)O3: experiment and modelling. Adv Appl Ceram 104:300–305CrossRefGoogle Scholar
  94. 94.
    Topolov VYu, Bowen CR, Bisegna P, Filippov SE (2013) The piezoelectric performance and anisotropy factors of modern three-component composites. In: Parinov IA (ed) Nano- and piezoelectric technologies, materials and devices. Nova Science Publishers, New York, pp 51–78Google Scholar
  95. 95.
    Lopatin SS, Lupeiko TG, Nesterov AA (1989) Properties of lead zirconate titanate ceramic with oriented pores. Izv Akad Nauk SSSR Neorg Mater 24:1229–1230 (in Russian)Google Scholar
  96. 96.
    Topolov VYu, Glushanin SV (2002) Evolution of connectivity patterns and links between interfaces and piezoelectric properties of two-component composites. J Phys D Appl Phys 35:2008–2014CrossRefGoogle Scholar
  97. 97.
    Levassort F, Lethiecq M, Millar C, Pourcelot L (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans Ultrason Ferroelectr Freq Control 45:1497–1505CrossRefGoogle Scholar
  98. 98.
    Levin VM, Rakovskaja MI, Kreher WS (1999) The effective thermoelectroelastic properties of microinhomogeneous materials. Int J Solids Struct 36:2683–2705CrossRefGoogle Scholar
  99. 99.
    Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37CrossRefGoogle Scholar
  100. 100.
    Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191CrossRefGoogle Scholar
  101. 101.
    Topolov VYu, Bowen CR, Bisegna P, Krivoruchko AV (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRefGoogle Scholar
  102. 102.
    Topolov VYu, Bowen CR, Bisegna P (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens Actuators A Phys 229:94–103CrossRefGoogle Scholar
  103. 103.
    Zheng L, Yi X, Zhang XC, Jiang W, Yang B (2013) Complete set of material constants of 0.95(Na0.5Bi0.5)TiO3–0.05BaTiO3 lead-free piezoelectric single crystal and the delineation of extrinsic contributions. Appl Phys Lett 103:122905CrossRefGoogle Scholar
  104. 104.
    Bechmann R (1956) Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equations. J Acoust Soc Am 28:347–350CrossRefGoogle Scholar
  105. 105.
    Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898CrossRefGoogle Scholar
  106. 106.
    Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vitaly Yu. Topolov
    • 1
    Email author
  • Christopher R. Bowen
    • 2
  • Paolo Bisegna
    • 3
  1. 1.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Department of Civil Engineering and Computer ScienceUniversity of Rome Tor VergataRomeItaly

Personalised recommendations