Advertisement

Effective Piezoelectric Coefficients \(d_{ij}^{*}\): From Microgeometry to Anisotropy

  • Vitaly Yu. TopolovEmail author
  • Christopher R. Bowen
  • Paolo Bisegna
Chapter
  • 467 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 271)

Abstract

Piezoelectric coefficients dij are most widespread to describe the piezoelectric effect, electromechanical properties and other related parameters. The effective piezoelectric coefficients \(d_{ij}^{*}\) and their links to sensitivity are discussed for piezo-active composites with various connectivity patterns. Examples of the piezoelectric sensitivity of the 2–2-type, 1–3-type, 1–1-type, 0–3-type, and 3–β composites based on ferroelectics are considered. The role of the microgeometry in forming the piezoelectric sensitivity and anisotropy of the piezoelectric coefficients \(d_{3j}^{*}\) is analysed. Ways to improve the piezoelectric sensitivity in terms of \(d_{ij}^{*}\) are discussed in connection with potential piezotechnical applications.

References

  1. 1.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, Oxford, New York, TorontoGoogle Scholar
  2. 2.
    Zheludev IS (1971) Physics of crystalline dielectrics. Vol 2: Electrical properties. Plenum, New YorkCrossRefGoogle Scholar
  3. 3.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London, New YorkGoogle Scholar
  4. 4.
    Sherman CH, Butler JL (2007) Transducers and arrays for underwater sound. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Tichý J, Erhart J, Kittinger E, Přívratská J (2010) Fundamentals of piezoelectric sensorics. Mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer, BerlinGoogle Scholar
  6. 6.
    Uchino K (2008) Piezoelectric motors and transformers. In: Heywang W, Lubitz K, Wersing W (eds) Piezoelectricity, evolution and future of a technology. Springer, Berlin, pp 257–277Google Scholar
  7. 7.
    Haertling G (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818CrossRefGoogle Scholar
  8. 8.
    Bowen CR, Topolov VYu, Kim HA (2016) Modern piezoelectric energy-harvesting materials. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar
  9. 9.
    Shvarstman VV, Kholkin AL (2011) Nanoscale investigation of polycrystalline ferroelectric materials via piezoresponse force microscopy. In: Pardo L, Ricote J (eds) Multifunctional polycrystalline ferroelectric materials. Processing and properties. Springer, Dordrecht, pp 409–468CrossRefGoogle Scholar
  10. 10.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  11. 11.
    Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  12. 12.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  13. 13.
    Chan HLW, Ng PKL, Choy CL (1999) Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites. Appl Phys Lett 74:3029–3031CrossRefGoogle Scholar
  14. 14.
    Nan CW, Weng GJ (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88:416–423CrossRefGoogle Scholar
  15. 15.
    Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRefGoogle Scholar
  16. 16.
    Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson LM (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York, pp 92–128Google Scholar
  17. 17.
    Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775CrossRefGoogle Scholar
  18. 18.
    Safari A, Akdogan EK (2006) Rapid prototyping of novel piezoelectric composites. Ferroelectrics 331:153–179CrossRefGoogle Scholar
  19. 19.
    Smay JE, Tuttle B, Cesarano J III (2008) Robocasting of three-dimensional piezoelectric structures. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York, pp 305–318CrossRefGoogle Scholar
  20. 20.
    Topolov VYu, Turik AV (2000) Non-monotonic concentration dependence of electromechanical properties of piezo-active 2–2 composites. J Phys D Appl Phys 33:725–737CrossRefGoogle Scholar
  21. 21.
    Grekov AA, Kramarov SO, Kuprienko AA (1987) Anomalous behavior of the two-phase lamellar piezoelectric texture. Ferroelectrics 76:43–48CrossRefGoogle Scholar
  22. 22.
    Levassort F, Lethiecq M, Millar C, Pourcelot L (1998) Modeling of highly loaded 0–3 piezoelectric composites using a matrix method. IEEE Trans Ultrason Ferroelectr Freq Control 45:1497–1505CrossRefGoogle Scholar
  23. 23.
    Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708CrossRefGoogle Scholar
  24. 24.
    Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRefGoogle Scholar
  25. 25.
    Evans KE, Alderson KL (1992) The static and dynamic moduli of auxetic microporous polyethylene. J Mater Sci Lett 11:1721–1724CrossRefGoogle Scholar
  26. 26.
    Ren K, Liu Y, Geng X, Hofmann HF, Zhang QM (2006) Single crystal PMN–PT/epoxy 1–3 composite for energy-harvesting application. IEEE Trans Ultrason Ferroelectr Freq Control 53:631–638CrossRefGoogle Scholar
  27. 27.
    Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRefGoogle Scholar
  28. 28.
    Topolov VYu, Krivoruchko AV (2009) Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity. Smart Mater Struct 18:011–065Google Scholar
  29. 29.
    Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475CrossRefGoogle Scholar
  30. 30.
    Zhang R, Jiang B, Cao W (2003) Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias. Appl Phys Lett 82:787–789CrossRefGoogle Scholar
  31. 31.
    Peng J, Luo H, He T, Xu H, Lin D (2005) Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3–0.30PbTiO3 single crystal. Mater Lett 59:640–643CrossRefGoogle Scholar
  32. 32.
    Liu G, Jiang W, Zhu J, Cao W (2011) Electromechanical properties and anisotropy of single- and multi-domain 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystals. Appl Phys Lett 99:162901CrossRefGoogle Scholar
  33. 33.
    Sun E, Cao W, Jiang W, Han P (2011) Complete set of material properties of single domain 0.24Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single crystal and the orientation effects. Appl Phys Lett 99:032901CrossRefGoogle Scholar
  34. 34.
    Yin J, Jiang B, Cao W (2000) Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystals. IEEE Trans Ultrason Ferroelectr Freq Control 47:285–291CrossRefGoogle Scholar
  35. 35.
    Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J Mater Sci Lett 21:1877–1879CrossRefGoogle Scholar
  36. 36.
    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X (2015) Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers—a review. Prog Mater Sci 68:1–66CrossRefGoogle Scholar
  37. 37.
    Turik AV, Topolov VYu (1997) Ferroelectric ceramics with a large piezoelectric anisotropy. J Phys D Appl Phys 30:1541–1549CrossRefGoogle Scholar
  38. 38.
    Dongyu X, Xin C, Shifeng H (2015) Investigation of inorganic fillers on properties of 2–2 connectivity cement/polymer based piezoelectric composites. Constr Build Mater 94:678–683CrossRefGoogle Scholar
  39. 39.
    Topolov VYu, Bowen CR, Ermakov IA (2016) Remarkable hydrostatic piezoelectric response of novel 2–0–2 composites. Ferroelectr Lett Sect 42:90–95Google Scholar
  40. 40.
    Topolov VYu, Ermakov IA (2016) Piezoelectric properties and hydrostatic parameters of the novel 2–0–2 composite based on a relaxor-ferroelectric single crystal. Nano- i Mikrosistemnaya Tekhnika 18:696–699Google Scholar
  41. 41.
    Huang JH, Kuo W-S (1996) Micromechanics determination of the effective properties of piezoelectric composites containing spatially oriented short fibers. Acta Mater 44:4889–4898CrossRefGoogle Scholar
  42. 42.
    Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 36:434–441CrossRefGoogle Scholar
  43. 43.
    Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37CrossRefGoogle Scholar
  44. 44.
    Bezus SV, Topolov VYu, Bowen CR (2006) High-performance 1–3-type composites based on (1 − x) Pb(A1/3Nb2/3)O3 − xPbTiO3 single crystals (A = Mg, Zn). J Phys D Appl Phys 39:1919–1925CrossRefGoogle Scholar
  45. 45.
    Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 single crystals. Ferroelectrics 376:140–152CrossRefGoogle Scholar
  46. 46.
    Topolov VYu, Bowen CR, Bisegna P, Krivoruchko AV (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRefGoogle Scholar
  47. 47.
    Topolov VYu, Bowen CR, Bisegna P (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens Actuators A – Phys 229:94–103CrossRefGoogle Scholar
  48. 48.
    Topolov VYu, Bowen CR, Bisegna P, Panich AE (2015) Effect of the matrix subsystem on hydrostatic parameters of a novel 1–3-type piezo-composite. Funct Mater Lett 8:1550049CrossRefGoogle Scholar
  49. 49.
    COMSOL, Inc. (2007) COMSOL Multiphysics™ User’s Guide (version 3.4). http://www.comsol.com/
  50. 50.
    Bowen CR, Topolov VYu, Isaeva AN, Bisegna P (2016) Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. Cryst Eng Comm 18:5986–6001CrossRefGoogle Scholar
  51. 51.
    Topolov VYu, Turik AV (2001) On increasing the hydrostatic sensitivity of three-component piezocomposites. Tech Phys Lett 27:81–83CrossRefGoogle Scholar
  52. 52.
    Topolov VYu, Turik AV (2001) Porous piezoelectric composites with extremely high reception parameters. Tech Phys 46:1093–1100CrossRefGoogle Scholar
  53. 53.
    Panich AE, Topolov VYu, Glushanin SV (2006) High-performance 1–3-type relaxor-ferroelectric-based composites. In: Vibroengineering, 6th international conference proceedings, October 12–14, 2006. Kaunas University of Technology, Lithuania. Technologija, Kaunas, pp 226–230Google Scholar
  54. 54.
    Topolov VYu, Panich AE (2009) Problem of piezoelectric sensitivity of 1–3-type composites based on ferroelectric ceramics. Ferroelectrics 392:107–119CrossRefGoogle Scholar
  55. 55.
    Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol 71:1082–1088CrossRefGoogle Scholar
  56. 56.
    Dunn ML, Taya M (1993) Electromechanical properties of porous piezoelectric ceramics. J Am Ceram Soc 76:1697–1706CrossRefGoogle Scholar
  57. 57.
    Glushanin SV, Topolov VYu (2001) Features of electromechanical properties of piezoelectric composites with elements of connectivity 1–1. J Phys D Appl Phys 34:2518–2529CrossRefGoogle Scholar
  58. 58.
    Glushanin SV, Topolov VYu (2001) Anisotropy of the electromechanical properties and a high piezoelectric sensitivity of the 1–1 type ferroelectric piezocomposites. Tech Phys Lett 27:626–628CrossRefGoogle Scholar
  59. 59.
    Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191CrossRefGoogle Scholar
  60. 60.
    Filippov SE, Vorontsov AA, Topolov VYu, Brill OE, Bisegna P, Panich AE (2014) Features of the piezoelectric effect in a novel PZT-type ceramic/clay composite. Ferroelectr Lett Sect 41:82–88CrossRefGoogle Scholar
  61. 61.
    Bowles JE (1996) Foundation analysis and design. McGraw-Hill, New YorkGoogle Scholar
  62. 62.
    Balkevich VL (1996) Technical ceramics. Stroyizdat, Moscow (in Russian)Google Scholar
  63. 63.
    Glushanin SV, Topolov VYu (2005) Features of the electromechanical properties of 0–3 composites of the Pb(Zr, Ti)O3-based ferroelectric ceramics – polymer type. Tech Phys Lett 31:346–348CrossRefGoogle Scholar
  64. 64.
    Bowen CR, Topolov VYu (2003) Piezoelectric sensitivity of PbTiO3-based ceramic/polymer composites with 0–3 and 3–3 connectivity. Acta Mater 51:4965–4976CrossRefGoogle Scholar
  65. 65.
    Borzov PA, Vorontsov AA, Topolov VYu, Brill OE (2016) Piezoelectric performance and features of microgeometry of novel composites based on ferroelectric ZTS-19 ceramics. In: Parinov IA, Chang S-H, Topolov VYu (eds) Proceedings of the 2015 International Conference on “Physics, Mechanics of New Materials and Their Applications”, Devoted to the 100th Anniversary of the Southern Federal University. Nova Science Publishers, New York, pp 115–122Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vitaly Yu. Topolov
    • 1
    Email author
  • Christopher R. Bowen
    • 2
  • Paolo Bisegna
    • 3
  1. 1.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Department of Civil Engineering and Computer ScienceUniversity of Rome Tor VergataRomeItaly

Personalised recommendations