Advertisement

Microgeometry of Composites and Their Piezoelectric Coefficients \(\varvec{g_{ij}^{*} }\)

  • Vitaly Yu. TopolovEmail author
  • Christopher R. Bowen
  • Paolo Bisegna
Chapter
  • 446 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 271)

Abstract

Piezoelectric coefficients gij represent a link between an external mechanical stress applied to a sample and an electric field formed by polarisation charges of the sample as a result of the direct piezoelectric effect. The piezoelectric coefficients gij also characterise a link between a strain and electric displacement at the converse piezoelectric effect. The piezoelectric sensitivity associated with gij is of importance for sensor, energy-harvesting, acoustic, and hydroacoustic applications, for piezo-ignition systems, etc. Examples of the effective piezoelectric coefficients \(g_{ij}^{*}\), max\(g_{33}^{*}\) and their links to the piezoelectric coefficients \(d_{ij}^{*}\) are discussed for piezo-active composites with various connectivity patterns (2–2-type, 1–3-type, 1–1-type, 0–3-type, and 3–β composites). The important role of the microgeometric factor and polymer component at achieving the large values of \(g_{ij}^{*}\) of the composite is shown.

References

  1. 1.
    Zheludev IS (1971) Physics of crystalline dielectrics. Vol 2: Electrical properties.  Plenum, New YorkCrossRefGoogle Scholar
  2. 2.
    Steinem C, Janshoff A (eds) (2007) Piezoelectric sensors. Springer, BerlinGoogle Scholar
  3. 3.
    Sherman CH, Butler JL (2007) Transducers and arrays for underwater sound. Springer, New YorkCrossRefGoogle Scholar
  4. 4.
    Fraden J (2010) Handbook of modern sensors. Physics, designs, and applications. Springer, New YorkCrossRefGoogle Scholar
  5. 5.
    Sharapov V (2011) Piezoceramic sensors. Springer, HeidelbergCrossRefGoogle Scholar
  6. 6.
    Lupeiko TG, Lopatin SS (2004) Old and new problems in piezoelectric materials research and materials with high hydrostatic sensitivity. Inorg Mater 40 (Suppl. 1):S19–S32CrossRefGoogle Scholar
  7. 7.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  8. 8.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52:746–775CrossRefGoogle Scholar
  10. 10.
    Zhang S, Li F (2012) High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J Appl Phys 111:031301CrossRefGoogle Scholar
  11. 11.
    Topolov VYu, Krivoruchko AV, Bowen CR (2012) Anisotropy of electromechanical properties and hydrostatic response of advanced 2–2-type composites. Physica Status Solidi A 209:1334–1342CrossRefGoogle Scholar
  12. 12.
    Topolov VYu, Glushanin SV (2009) Features of the hydrostatic piezoelectric response of a novel 2–2–0 composite based on single-domain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 crystal. Compos Sci Technol 69:2532–2537CrossRefGoogle Scholar
  13. 13.
    Topolov VYu, Bowen CR, Ermakov IA (2016) Remarkable hydrostatic piezoelectric response of novel 2–0–2 composites. Ferroelectr Lett Sect 43:90–95CrossRefGoogle Scholar
  14. 14.
    Grekov AA, Kramarov SO, Kuprienko AA (1987) Anomalous behavior of the two-phase lamellar piezoelectric texture. Ferroelectrics 76:43–48CrossRefGoogle Scholar
  15. 15.
    Adachi M, Shiosaki T, Kobayashi H, Ohnishi O, Kawabata A (1985) Temperature compensated piezoelectric lithium tetraborate crystal for high frequency surface acoustic wave and bulk wave device applications. In: Proceedings of 1985 IEEE Ultrasonics Symposium, IEEE, New York, pp 228–232Google Scholar
  16. 16.
    Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRefGoogle Scholar
  17. 17.
    Nagatsuma K, Ito Y, Jyomura S, Takeuchi H, Ashida S (1985) Elastic properties of modified PbTiO3 ceramics with zero temperature coefficients. In: Taylor GW (ed) Ferroelectricity and related phenomena. Piezoelectricity, vol 4. Gordon and Breach Science Publishers, New York, pp 167–176Google Scholar
  18. 18.
    Gusakova LG, Poguibko VM, Spiridonov NA, Ishchuk VM, Kisel NK (2012) Lead-free nanostructured piezoceramic material based on (K, Na)NbO3. Nanosyst Nanomater Nanotechnol 10:303–312 (in Russian)Google Scholar
  19. 19.
    Yan Y, Zhou JE, Maurya D, Wang YU, Priya S (2016) Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat Commun 7:13089CrossRefGoogle Scholar
  20. 20.
    Topolov VYu, Krivoruchko AV (2009) Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity. Smart Mater Struct 18:065011Google Scholar
  21. 21.
    Grekov AA, Kramarov SO, Kuprienko AA (1989) Effective properties of a transversely isotropic piezoelectric composite with cylindrical inclusions. Mech Compos Mater 25:54–61CrossRefGoogle Scholar
  22. 22.
    Chan HLW, Unsworth J (1989) Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans Ultrason Ferroelectr Freq Control 36:434–441CrossRefGoogle Scholar
  23. 23.
    Gibiansky LV, Torquato S (1997) On the use of homogenization theory to design optimal piezocomposites for hydrophone applications. J Mech Phys Solids 45:689–708CrossRefGoogle Scholar
  24. 24.
    Bezus SV, Topolov VYu, Bowen CR (2006) High-performance 1–3-type composites based on (1 − x) Pb(A1/3Nb2/3)O3xPbTiO3 single crystals (A = Mg, Zn). J Phys D Appl Phys 39:1919–1925CrossRefGoogle Scholar
  25. 25.
    Wang F, He C, Tang Y (2007) Single crystal 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3/epoxy 1–3 piezoelectric composites prepared by the lamination technique. Mater Chem Phys 105:273–277CrossRefGoogle Scholar
  26. 26.
    Topolov VYu, Krivoruchko AV, Bisegna P, Bowen CR (2008) Orientation effects in 1–3 composites based on 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 single crystals. Ferroelectrics 376:140–152CrossRefGoogle Scholar
  27. 27.
    Topolov VYu, Bisegna P (2010) Anisotropic piezoelectric properties of 1–3 ceramic/polymer composites comprising rods with elliptic cross section. J Electroceram 25:26–37CrossRefGoogle Scholar
  28. 28.
    Topolov VYu, Bowen CR, Bisegna P, Krivoruchko AV (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195CrossRefGoogle Scholar
  29. 29.
    Bowen CR, Topolov VYu, Isaeva AN, Bisegna P (2016) Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18:5986–6001CrossRefGoogle Scholar
  30. 30.
    Topolov VYu, Bowen CR, Bisegna P (2015) New aspect-ratio effect in three-component composites for piezoelectric sensor, hydrophone and energy-harvesting applications. Sens Actuators A – Phys 229:94–103CrossRefGoogle Scholar
  31. 31.
    Topolov VYu, Bowen CR, Bisegna P, Panich AE (2015) Effect of the matrix subsystem on hydrostatic parameters of a novel 1–3-type piezo-composite. Funct Mater Lett 8:1550049CrossRefGoogle Scholar
  32. 32.
    Topolov VYu, Krivoruchko AV, Bisegna P (2011) Electromechanical coupling and its anisotropy in a novel 1–3–0 composite based on single-domain 0.58Pb(Mg1/3Nb2/3)O3–0.42PbTiO3 crystal. Compos Sci Technol 71:1082–1088CrossRefGoogle Scholar
  33. 33.
    Glushanin SV, Topolov VYu (2001) Features of electromechanical properties of piezoelectric composites with elements of connectivity 1–1. J Phys D Appl Phys 34:2518–2529CrossRefGoogle Scholar
  34. 34.
    Glushanin SV, Topolov VYu (2001) Anisotropy of the electromechanical properties and a high piezoelectric sensitivity of the 1–1 type ferroelectric piezocomposites. Tech Phys Lett 27:626–628CrossRefGoogle Scholar
  35. 35.
    Chan HLW, Ng PKL, Choy CL (1999) Effect of poling procedure on the properties of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites. Appl Phys Lett 74:3029–3031CrossRefGoogle Scholar
  36. 36.
    Ng KL, Chan HLW, Choy CL (2000) Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans Ultrason Ferroelectr Freq Control 47:1308–1315CrossRefGoogle Scholar
  37. 37.
    Venkatragavaraj E, Satish B, Vinod PR, Vijaya MS (2001) Piezoelectric properties of ferroelectric PZT–polymer composites. J Phys D Appl Phys 34:487–492CrossRefGoogle Scholar
  38. 38.
    Chiang CK, Popielarz R (2002) Polymer composites with high dielectric constant. Ferroelectrics 275:1–9CrossRefGoogle Scholar
  39. 39.
    Wilson SA, Maistros GM, Whatmore RW (2005) Structure modification of 0–3 piezoelectric ceramic/polymer composites through dielectrophoresis. J Phys D Appl Phys 38:175–182CrossRefGoogle Scholar
  40. 40.
    Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater Chem Phys 97:357–364CrossRefGoogle Scholar
  41. 41.
    Topolov VYu, Turik AV, Chernobabov AI (1994) On the mechanism of high piezoelectric anisotropy in lead titanate-based ferroelectrics. Crystallogr Rep 39:805–809Google Scholar
  42. 42.
    Topolov VYu, Turik AV, Chernobabov AI (1994) On the piezoelectric anisotropy in modified PbTiO3 ceramics. Ferroelectrics 154:271–276CrossRefGoogle Scholar
  43. 43.
    Ngoma JB, Cavaille JY, Paletto J, Perez J (1990) Dielectric and piezoelectric properties of copolymer-ferroelectric composite. Ferroelectrics 109:205–210CrossRefGoogle Scholar
  44. 44.
    Gururaja TR, Safari A, Newnham RE, Cross LE (1988) Piezoelectric ceramic-polymer composites for transducer applications. In: Levinson M (ed) Electronic ceramics: properties, devices, and applications. Marcel Dekker, New York, pp 92–128Google Scholar
  45. 45.
    Lushcheykin GA (1987) Polymer and composition piezoelectrics. Izvestiya Akademii Nauk SSSR Seriya Fizicheskaya 51:2273–2276 (in Russian)Google Scholar
  46. 46.
    Pardo L, Mendiola J, Alemany C (1988) Theoretical treatment of ferroelectric composites using Monte Carlo calculations. J Appl Phys 64:5092–5097CrossRefGoogle Scholar
  47. 47.
    Babu I, van den Ende DA, de With G (2010) Processing and characterization of piezoelectric 0–3 PZT/LCT/PA composites. J Phys D Appl Phys 43:425402CrossRefGoogle Scholar
  48. 48.
    Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties. J Am Ceram Soc 98:1829–1835CrossRefGoogle Scholar
  49. 49.
    Kar-Gupta R, Venkatesh TA (2007) Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater 55:1093–1108CrossRefGoogle Scholar
  50. 50.
    Sessler GM (1981) Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 70:1596–1608CrossRefGoogle Scholar
  51. 51.
    Topolov VYu, Bisegna P, Glushanin SV, Panich AA (2011) Interrelations between microstructure and piezoelectric sensitivity in novel 0–3–0 composites based on 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal. Ferroelectrics 413:11–28CrossRefGoogle Scholar
  52. 52.
    Topolov VYu, Bisegna P, Bowen CR (2011) Analysis of the piezoelectric performance of modern 0–3-type composites based on relaxor-ferroelectric single crystals. Ferroelectrics 413:176–191CrossRefGoogle Scholar
  53. 53.
    Cheng X, Huang S, Chang J, Lu L, Liu F, Ye Z, Wang S (2005) Dielectric and piezoelectric properties of piezoelectric ceramic–sulphoaluminate cement composites. Smart Mater Struct 14:N59–N63CrossRefGoogle Scholar
  54. 54.
    Smay JE, Tuttle B, Cesarano J III (2008) Robocasting of three-dimensional piezoelectric structures. In: Safari A, Akdoğan EK (eds) Piezoelectric and acoustic materials for transducer applications. Springer, New York, pp 305–318CrossRefGoogle Scholar
  55. 55.
    Smay JE, Cesarano J III, Tuttle BA, Lewis JA (2002) Piezoelectric properties of 3–X periodic Pb(ZrxTi1–x)O3–polymer composites. J Appl Phys 92:6119–6127CrossRefGoogle Scholar
  56. 56.
    Filippov SE, Vorontsov AA, Topolov VYu, Brill OE, Bisegna P, Panich AE (2014) Features of the piezoelectric effect in a novel PZT-type ceramic/clay composite. Ferroelectr Lett Sect 41:82–88CrossRefGoogle Scholar
  57. 57.
    Mendiola J, Jimenez B (1984) Review of recent work on piezoelectric composite systems. Ferroelectrics 53:159–166CrossRefGoogle Scholar
  58. 58.
    Bowen CR, Topolov VYu, Kim HA (2016) Modern piezoelectric energy-harvesting materials. Springer International Publishing, SwitzerlandCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vitaly Yu. Topolov
    • 1
    Email author
  • Christopher R. Bowen
    • 2
  • Paolo Bisegna
    • 3
  1. 1.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Department of Civil Engineering and Computer ScienceUniversity of Rome Tor VergataRomeItaly

Personalised recommendations