Advertisement

Piezoelectric Coefficients \(\user2{e}_{\user2{ij}}^{*}\) and \(\user2{d}_{\user2{ij}}^{*}\): Combination of Properties at Specific Microgeometry

  • Vitaly Yu. TopolovEmail author
  • Christopher R. Bowen
  • Paolo Bisegna
Chapter
  • 442 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 271)

Abstract

Piezoelectric coefficients eij are used to describe a link between an external mechanical strain and a piezoelectric polarisation caused by the direct piezoelectric effect. The piezoelectric coefficients eij are of importance to analyse a link between a mechanical stress and an external electric field at the converse piezoelectric effect. Examples of the piezoelectric sensitivity of composites with various connectivity patterns are discussed in terms of the effective piezoelectric coefficients \(e_{ij}^{*}\) and relations between the piezoelectric coefficients \(e_{ij}^{*}\) and \(d_{ij}^{*}\). Of specific interest are a non-monotonic behaviour of \(e_{ij}^{*}\), large values of \(| {e_{ij}^{*} } |\) and considerable anisotropy of \(e_{3j}^{*}\) as well as their links to the microgeometry and properties of components.

Keywords

Piezoelectric Coefficient Longitudinal Piezoelectric Effect Wide Volume-fraction Range Matrix Laminates combinationCombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zheludev IS (1971) Physics of crystalline dielectrics. Vol 2: Electrical properties. Plenum, New YorkCrossRefGoogle Scholar
  2. 2.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  3. 3.
    Ikeda T (1990) Fundamentals of piezoelectricity. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Steinem C, Janshoff A (eds) (2007) Piezoelectric sensors. Springer, BerlinGoogle Scholar
  5. 5.
    Sharapov V (2011) Piezoceramic sensors. Springer, HeidelbergCrossRefGoogle Scholar
  6. 6.
    Topolov VYu, Bowen CR (2009) Electromechanical properties in composites based on ferroelectrics. Springer, LondonGoogle Scholar
  7. 7.
    Ikegami S, Ueda I, Nagata T (1971) Electromechanical properties of PbTiO3 ceramics containing La and Mn. J Acoust Soc Am 50:1060–1066CrossRefGoogle Scholar
  8. 8.
    Khoroshun LP, Maslov BP, Leshchenko PV (1989) Prediction of effective properties of piezo-active composite materials. Naukova Dumka, Kiev (in Russian)Google Scholar
  9. 9.
    Huebner W, Reidmeyer MR, Stevenson JW, Busse L (1995) Fabrication of 2–2 connectivity PZT/thermoplastic composites for high efficiency linear arrays. In: Pandey RK, Liu M, Safari A (eds) ISAF’94: Proceedings of the ninth IEEE international symposium on applications of ferroelectrics. University Park, Pennsylvania, USA, 7–10 August 1994. IEEE, Piscataway, pp 206–209Google Scholar
  10. 10.
    Krivoruchko AV, Topolov VYu (2007) On the remarkable performance of novel 2–2-type composites based on [011] poled 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 single crystals. J Phys D Appl Phys 40:7113–7120Google Scholar
  11. 11.
    Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3:Mn lead-free single crystal with high piezoelectric properties. J Am Ceram Soc 98:1829–1835CrossRefGoogle Scholar
  12. 12.
    Topolov VYu, Bisegna P, Bowen CR (2014) Piezo-active composites. Orientation effects and anisotropy factors. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  13. 13.
    Topolov VYu, Krivoruchko AV (2009) Polarization orientation effect and combination of electromechanical properties in advanced 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystal/polymer composites with 2–2 connectivity. Smart Mater Struct 18:065011Google Scholar
  14. 14.
    Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric composites. Mater Res Bull 13:525–536CrossRefGoogle Scholar
  15. 15.
    Topolov VYu, Bowen CR, Ermakov IA (2016) Remarkable hydrostatic piezoelectric response of novel 2–0–2 composites. Ferroelectr Lett Sect 43:90–95CrossRefGoogle Scholar
  16. 16.
    Topolov VYu, Bowen CR, Krivoruchko AV (2017) Piezoelectric performance and hydrostatic parameters of novel 2–2-type composites. IEEE Trans Ultrason Ferroelectr Freq Control 64:1599–1607CrossRefGoogle Scholar
  17. 17.
    Glushanin SV, Topolov VYu, Krivoruchko AV (2006) Features of piezoelectric properties of 0–3 PbTiO3-type ceramic/polymer composites. Mater Chem Phys 97:357–364CrossRefGoogle Scholar
  18. 18.
    Topolov VYu, Bisegna P, Krivoruchko AV (2008) Features of electromechanical properties of 1–3 composites based on PbTiO3-type ceramics. J Phys D Appl Phys 41:035406CrossRefGoogle Scholar
  19. 19.
    Bowen CR, Topolov VYu, Isaeva AN, Bisegna P (2016) Advanced composites based on relaxor-ferroelectric single crystals: from electromechanical coupling to energy-harvesting applications. CrystEngComm 18:5986–6001CrossRefGoogle Scholar
  20. 20.
    Shuvaeva VA, Glazer AM, Zekria D (2005) The macroscopic symmetry of           Pb(Mg1/3Nb2/3)1–xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5). J Phys: Condens Matter 17:5709–5723Google Scholar
  21. 21.
    Singh AK, Pandey D, Zakharko O (2006) Powder neutron diffraction study of phase transitions in and a phase diagram of (1−x)[Pb(Mg1/3Nb2/3)O3]–xPbTiO3. Physical Review B 74:024101CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vitaly Yu. Topolov
    • 1
    Email author
  • Christopher R. Bowen
    • 2
  • Paolo Bisegna
    • 3
  1. 1.Department of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Department of Mechanical EngineeringUniversity of BathBathUK
  3. 3.Department of Civil EngineeringUniversity of Rome Tor VergataRomeItaly

Personalised recommendations