Generalized Free Fields

  • Karl-Hermann NeebEmail author
  • Gestur Ólafsson
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 32)


We now turn to representations of the Poincaré group corresponding to scalar generalized free fields and their euclidean realizations by representations of the euclidean motion group. We start in Sect. 8.1 with a brief discussion of Lorentz invariant measures on the forward light cone \(\overline{V_+}\) and turn in Sect. 8.2 to the corresponding unitary representations. Applying the dilation construction to the time translation semigroup leads immediately to a euclidean Hilbert space \(\mathscr {E}\) on which we have a unitary representation of the euclidean motion group. In Sect. 8.3 we characterize those representations which extend to the conformal group \(\mathrm O_{2,d}(\mathbb {R})\) of Minkowski space. Then the euclidean realization is a unitary representation of the Lorentz group \(\mathrm O_{1,d+1}(\mathbb {R})\), acting as the conformal group on euclidean \(\mathbb {R}^d\).

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department MathematikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations