Advertisement

Mikrobieller Stickstoffumsatz in der Rhizosphäre

  • Silke Ruppel
Chapter
  • 85 Downloads

Abstract

The potential nitrogen immobilization rate of a soil bacterial community was investigated in a laboratorial experiment. The amount of nitrogen immobilized by the bacterial biomass in conditions which were not carbon limited depend on the growth rate of the bacteria and their C/N ratio. Both factors were measured under optimal growth conditions with increasing amounts of ammoniumnitrate (0, 50 and 100 mg N/1). The bacterial growth was four times higher in the 100 mg N/1 nitrogen fertilized treatment compared to the control without nitrogen and the C/N ratio varied between 6.1 and 8.6. If we take these fluctuations into account and calculate the potential nitrogen immobilization rate of the microbial community in a diluvial sand soil, we receive amounts between 45 and 128 kg N/(ha · d). This is a lot of nitrogen which could be transferred within one day if carbon is not limited and the growth conditions are optimal (28 °C and saturated oxygen). In which time course the microbial immobilized nitrogen will be remineralized or transferred into the soil organic carbon pool is not yet understood. Models describing nitrogen transfer rates in soils for fertilization recommendations could probably be improved when these microbial immobilization rates would be included.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Cadisch, G., Giller, K. E. (Hrsg.) 1997: Driven by Nature: Plant Litter Quality and Decomposition. Oxon, New York: CAB International, 409 S.Google Scholar
  2. Lynch, J. M.; Whipps, J. M., 1990: Substrate flow in the rhizosphere. Plant and Soil129, 1–10.CrossRefGoogle Scholar
  3. Merbach, W.; Mirus, E.; Knof, G.; Remus, R.; Ruppel, S.; Russow, R.; Gransee, A.; Schulze, J., 1999: Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. Journal of Plant Nutrition and Soil Science162, 373–383.CrossRefGoogle Scholar
  4. Nieder, R.; Kersebaum, C.; Widmer, P.; Richter, J., 1993: Untersuchungen zur Stickstoff-Immobilisation in mineralisch gedüngten Ackerböden aus Löß während der Vegetationszeit von Winterweizen. Zeitschrift für Pflanzenernährung und Boden-kunde156, 293–300.CrossRefGoogle Scholar
  5. Ruppel, S.; Augustin, J., 1998: Methode zur direkten N-Bestimmung in der mikrobiellen Biomasse des Bodens. In: W. Merbach (Hrsg.) Pflanzenernährung, Wurzelleistung und Exsudation. Stuttgart, Leipzig: B. G. Teubner Verlagsgesellschaft, 21–28.Google Scholar
  6. Ruppel, S.; Rühlmann, R., 1999: Relation zwischen dem Gehalt an mikrobieller Biomasse und dem Pflanzenertrag auf Sand-Auenlehm-und Lößlehmboden nach langfristig unterschiedlicher organischer und mineralischer Düngung. In: W. Merbach, M. Körschens: „Dauerdüngungsversuche als Grundlage für nachhaltige Landnutzung und Quantifizierung von Stoffkreisläufen“. UFZ-Bericht24: 263–266.Google Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2001

Authors and Affiliations

  • Silke Ruppel
    • 1
  1. 1.Theodor-Echtermeyer-Weg 1Institut für Gemüse- und Zierpflanzenbau Großbeeren/Erfurt e. V.GroßbeerenDeutschland

Personalised recommendations