Cu-, Zn- und Cd-Aufnahme von Lupinus albus L., Lupinus angustifolius L. und Lupinus luteus L. im Vergleich zu Lolium multiflorum Lam

  • Komi Egle
  • Wilhelm Römer


Under P deficiency several lupin species exude organic acids which increase the solubility of phosphate and cations. However, most monocotyledons mostly are missing this property. It was the aim of this study to investigate the Cu, Zn and especially the Cd uptake of six cultivars of Lupinus albus, Lupinus angustifolius and Lupinus luteus in comparison to that of Lolium multiflorum (one cultivar) at a moderate P supply in a pot experiment (6 kg soil/pot). We used a humic podzol with the following characteristics: 6 % clay, 11 % silt, 84 % sand, 4.9 % organic substance, þH (CaCl2): 5.4, lactate soluble P: 32 mg/kg, HNO3/HCl soluble: Cu 2.4; Zn: 10 and Cd: 0.1 mg/kg. Fourteen days before sowing, heavy metals were added per kg soil as follows: 30 mg Cu, 75 mg Zn, 0.5 mg Cd and other nutrients: 66 mg K, 13 mg Mg as well as 66 mg N for ryegrass. For lupin, the soil was inoculated with rhizobia. After 3o and 42 days the shoot dry matter, the Cu, Zn and Cd contents in the shoots and roots and the root length were measured. The inflow (net uptake rate per unit root length) based on Cd amounts of the total plants (total inflow) or based on Cd amounts of shoots only (shoot inflow) were calculated as well as the root length/shoot weight ratio.

L. albus showed the lowest Cu, Zn and Cd concentration of shoots. The Cd content of blue lupin was four times, of yellow lupin five times and of ryegrass ten times higher than that of white lupin (0.2 ppm). The high Cd content of ryegrass may be mainly caused by the ten times higher root/shoot ratio in comparison to that of lupins. The low Cd content especially of white lupin shoot was not owing to a low total inflow (it was six times higher than that of ryegrass), but was due to a low Cd translocation from the roots into the shoots (L. albus: 4...5 %, L. angustifolius 12...23 %, L. luteus 24...27 %, Lolium 29 %). The translocation rates for Zn are : L. albus 37 %, L. angusti folius.61 %, L. luteus 68 %, Lolium56 % and for Cu: 43, 44, 52 and 34 % respectively. The high Cd retention capacity of lupin roots may be caused by high Cd sorption in apparent free space and/or complexation by low molecular organic anions in cortex cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beissner, L., 1997: Mobilisierung von Phosphor aus organischen und anorganischen P-Verbindungen durch Zuckerrübenwurzlen. Dissertation, Universität GöttingenGoogle Scholar
  2. Egle, K.; Römer, W.; Gerke, J.; Keller, H., 2000: The influence of P nutrition on organic acid exudation of the roots of three lupin species. In: E. van Santen, M. Wink, S. Weissman, P. Römer (Hrsg.) Lupin, An Ancient Crop for the New Millennium. Proceedings of the Ninth International Lupin Conference, Klink/Müritz (Germany), June, 20–24, 1999, 249–251.Google Scholar
  3. Dinkelaker, B.; Römheld, V.; Marschner, H., 1989: Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell and Environment12, 285–292.CrossRefGoogle Scholar
  4. Gerke, J.; Römer, W.; Jungk, A., 1994: The excretion of citric and malic acid by proteoid roots of Lupinus albus L. Effects on soil solution concentration of phosphate, iron and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Zeitschrift fr Pflanzenernhrung und Bodenkunde 157, 289–294. CrossRefGoogle Scholar
  5. Keller, H.; Römer, W., 1998: Ausscheidung organischer Säuren bei Spinat in Abhängigkeit von der P-Emährung und deren Einfluß auf die Löslichkeit von Cu, Zn und Cd im Boden. In: W. Merbach, L. Wittenmayer, J. Augustin (Hrsg.) Pflanzenernährung, Wurzelleistung und Exsudation. Stuttgart, Leipzig: B.G. Teubner Verlagsgesellschaft, 187–195.Google Scholar
  6. Neumann, G.; Massonneau, A.; Martinoi, E.; Römheld, V., 1999: Physiological adaptations to phosphorus deficiency during proteoid root development in white lupine. Planta 208, 273–382. CrossRefGoogle Scholar
  7. Newman, E. J., 1966: A method of estimating the total length of root in a sample. Journal of Applied Ecology3, 139–145.CrossRefGoogle Scholar
  8. Patel, P. M.; Wallace, A.; Hartsock, T.; Romney, E. M., 1980: Zinc, nickel and cadmium uptake and translocation to seed pods and their effects on gas exchange rates of bush bean plants grown in calcareous soil from northern Mojave Desert. Journal of Plant Nutrition2, 67–72.CrossRefGoogle Scholar
  9. Qi, L.; Chun-Rong, Z.; Huai-Man, C.; Ying-Xu, C., 1998: Transformation of cadmium species in rhizosphere. Acta Pedologica Sinica35, 461–467Google Scholar
  10. Strasser, O.; Römheld, V., 1998: Bedeutung des apoplastischen Eisens in den Wurzeln von Tomate und Gerste in Bodenkulturen für die Ernährung der Pflanze. In: W. Merbach, L. Wittenmayer, J. Augustin (Hrsg.) Pflanzenernährung, Wurzelleistung und Exsudation. Stuttgart, Leipzig: B. G. Teubner Verlagsgesellschaft, 80–86.Google Scholar
  11. Williams, R. F., 1948: The effects of phosphorus supply on the rates of intake of phosphorus and nitrogen and upon certain aspects of phosphorus metabolism in gramineous plants. Australian Journal of Scientific Research (B)1, 333–361.Google Scholar
  12. Yu, Q.; Tang, C., 2000: Lupin and pea differ in root cell wall buffering capacity and fractionation of apoplastic calcium. Journal of Plant Nutrition23, 529–539.CrossRefGoogle Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2001

Authors and Affiliations

  • Komi Egle
    • 1
  • Wilhelm Römer
    • 1
  1. 1.Institut für AgrikulturchemieGeorg-August-Universität GöttingenGöttingen

Personalised recommendations