Advertisement

Einfluß junger Schilfpflanzen auf die Umsetzung von Pflanzenresten in anaerobem Niedermoortorf

  • Jürgen Augustin
  • Rainer Remus
  • Edith Mirus
  • Friedrich Blasinski
Chapter
  • 85 Downloads

Abstract

In lab incubation experiments, one should clarify by means of 14C-labelled substances, to what extent plant and root litter, originate with common reed (Phragmites australis (Cay.) Trin. ex Steud.) at very large volume, may contribute to the methanogenesis in reflooded fen mires. It appeared that the 14C-labelled plant residues buried in the peat were microbially transformed relatively fast under the tested anaerobic circumstances too. Both the residues themselves and the growing plants had a strong influence on these processes. While in the case of CO2 between 40 and 100% of the CO2-C originated from the plant litter, was the share of this C source in the CH4-C between 10 and 65%. On account of it’s to be assumed, that the degraded peat itself also seems to play an important role as a substrate for the methanogenesis in addition to the plant and root litter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Armstrong, J.; Armstrong, W.; Beckett, P. M.; Halder, J. E.; Lyihe, S.; Holt, R.; Sinclair, A., 1996: Pathways of aeration and the mechanisms and beneficial effects of humidity- and venturi-induced convections in Phragmites australis (Cay.) trin. Ex Steud. Aquatic Botany54, 177–197.CrossRefGoogle Scholar
  2. Augustin, J.; Merbach, W.; Schmidt, W.; Reining, E., 1996: Effect of changing temperature and water table on trace gas emission from minerotrophic Mires. Angewandte Botanik70, 45–51.Google Scholar
  3. Chanton, J. P.; Bauer, J. E.; Glaser, P.; Siegel, D.; Ramonowïrz, E.; Tyler, S.; Kelley, C.; Lazrus, A., 1995: Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochimica et Cosmochimica Acta59, 3663–3668.CrossRefGoogle Scholar
  4. Crozier, C. R.; Devai, I.; Delaune, R. D., 1995: Methane and reduced sulfur gas production by fresh and dried wetland soils. Soil Science Society of America Journal59, 277–284.CrossRefGoogle Scholar
  5. Dannenberg, S.; Conrad, R., 1999: Effect of rice plants on methane production and rhizospheric metabolism in paddy soil. Biogeochemistry45, 53–71.Google Scholar
  6. Hartmann, M.; Klimanek, E.-M.; Augustin, J., 1999: Quantifizierung der Kohlen-stoffumsetzungsprozesse im System Pflanze — Niedermoor: Einfluß von Pflanzenart and Bodenvernässung. In: W. Merbach, L. Wittenmayer, J. Augustin (Hrsg.) Stoffumsatz im wurzelnahen Raum. Stuttgart, Leipzig: B. G. Teubner, 188–195.Google Scholar
  7. Kiene, R. P., 1991: Production and consumption of methane in aquatic systems. In: J. E. Rodgers, W. B. Whitman (Hrsg.) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. American Society of Microbiology, Washington D. C., 111–146.Google Scholar
  8. Kim, J.; Verma, S. B.; Billeesbach, D. P., 1998: Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology5, 433–440.CrossRefGoogle Scholar
  9. Richert, M.; Augustin, J.; Merbach, W., 2000a: Die Verteilung von assimilierten Kohlenstoff im System Schilf — Niedermoortorf nach 14C-Impulsmarkierung. In: W. Merbach, L. Wittenmayer, J. Augustin (Hrsg.) Rhizodeposition and Stoffverwertung. Stuttgart, Leipzig: B. G. Teubner, 28–33.CrossRefGoogle Scholar
  10. Richert, M.; Saarnio, S.; Juutinen, S.; Augustin, J.; Silvola, J.; Merbach, W., 2000b: Distribution of assimilated carbon in the system Phragmites australis — waterlogged peat soil after 14C pulse labelling. Biology and Fertility of Soils 32, 1–7.CrossRefGoogle Scholar
  11. Segers, R., 1998: Methane production and methane consumption: a review of process underlying wetland methane fluxes. Biogeochemistry41, 23–51.CrossRefGoogle Scholar
  12. Van der Nat, F.-J.; Middelburg, J. J., 1998: Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry43, 79–104.CrossRefGoogle Scholar
  13. Watanabe, A.; Yoshida, M.; Kimura, M, 1998: Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. Journal of Geophysical Research103, Nr. D7, 8237–8242.Google Scholar
  14. Whiting, G. J.; Chanton, J. P., 1993: Primary production control of methane emission from wetlands. Nature364, 794–795.CrossRefGoogle Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2001

Authors and Affiliations

  • Jürgen Augustin
    • 1
  • Rainer Remus
    • 1
  • Edith Mirus
    • 1
  • Friedrich Blasinski
    • 1
  1. 1.Institut für Primärproduktion und Mikrobielle ÖkologieZALF e. V.MünchebergDeutschland

Personalised recommendations