Advertisement

Sortenabhängige Unterschiede der Zusammensetzung der Rhizosphärenbakterienpopulationen bei Raps

  • Angelika Rumberger
  • Petra Marschner
  • Reinhard Lieberei
Chapter

Abstract

The composition of the bacterial microflora in the rhizosphere of two canola cultivars with either high (‘Rainbow’) or low (‘Monty’) root glucosinolate content was assessed using Biolog ecoplates and denaturing gradient gel electrophoresis (DGGE). After enzymatic breakdown, glucosinolates form toxic substances such as 2-phenylethylisothiocyanate (PEITC) which may affect sensitve microorganisms. Substrate utilization was strongly influenced by soil moisture but not by canola cultivar. Only in ‘Monty’, substrate utilization pattern was affected by PEITC concentration in the rhizosphere soil. The bacterial composition assessed by DGGE was shown to be strongly influenced by PEITC concentration in the rhizosphere soil as well as by soil moisture. The results show that already during growth of canola significant amounts of PEITC are released by the roots which may affect the composition of bacterial rhizosphere microflora.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Bones, A. M.; Rossrrer, J. T., 1996: The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum97, 194–208.CrossRefGoogle Scholar
  2. Bossio, D. A.; Scow, K. M., 1995: Impact of carbon and flooding on the metabolic diversity of microbial communities in soils. Applied and Environmental Microbiology61, 4043–4050.Google Scholar
  3. Brown, P. D.; Morra, M. J., 1997: Control of soil-borne plant pests using glucosinolate-containing plants. Advances in Agronomy61, 167–231.CrossRefGoogle Scholar
  4. Geisomino, A.; Keijzer-Wolters, A. C.; Cacco, G.; Van Eisas, J. D., 1999: Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. Journal ofMicrobiological Methods38, 1–15.CrossRefGoogle Scholar
  5. Graystone, S. J.; Wang, S.; Campbell, C. D.; Edwards, A. C., 1998: Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biology and Biochemistry30, 369–378.CrossRefGoogle Scholar
  6. Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Weiitngton, E. M. H., 1997: Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology63, 3223–3241Google Scholar
  7. Kirkegaard, J. A.; Sarwar, M.; Wong, P. T. W.; Mead, A., 1998: Biofumigation by brassicas reduces take-all infection. Proceedings of the 9th Australian Agronomy Conference. Wagga Wagga, 465–468.Google Scholar
  8. Kirkegaard, J. A.; Sarwar, M., 1999: Glucosinolate profiles of Australian canola (Brassica napus annua L.) and Indian mustard (Brassica juncea L.) cultivars: implications for biofumigation. Australian Journal of Agricultural Research50, 315–324.CrossRefGoogle Scholar
  9. O’callaghan, K. J.; Stone, P. J.; Hu, X.; Griffith, D. W.; Davey, M. R.; Cocking, E. C., 2000: Effects of glucosinolates and flavonoids on colonization of the roots of Brassica napus by Azorhizobium caulinodans ORS571. Applied and Environmental Microbiology66, 2185–2191.CrossRefGoogle Scholar
  10. Sarwar, M.; Kirkegaard, J. A., 1998: Biofumigation potential of brassicas. II. Effect of the enviroment and ontogeny on glucosinolate production and implications for screening. Plant and Soil201, 91–101.CrossRefGoogle Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2001

Authors and Affiliations

  • Angelika Rumberger
    • 1
  • Petra Marschner
    • 1
  • Reinhard Lieberei
    • 1
  1. 1.Institut für Angewandte BotanikUniversität HamburgHamburgDeutschland

Personalised recommendations