Advertisement

Linkage Analysis of Qualitative Traits

  • Mingyao LiEmail author
  • Gonçalo R. Abecasis
Chapter
  • 1.7k Downloads

Abstract

Linkage analysis of pedigree data is a powerful tool for mapping genomic regions that are likely to contain genes influencing human diseases. In this chapter, we will first introduce concepts and rationale of linkage analysis. Following this, we will then describe in detail two major types of linkage analysis strategies: model-based and model-free linkage analysis methods for qualitative traits. We will illustrate practical issues with linkage analysis by analysis of a real dataset collected from an age-related macular degeneration study. We will also describe how to identify the single nucleotide polymorphisms (SNPs) that account for linkage signal after linkage analysis is conducted. Finally, we will compare model-based and model-free linkage analysis methods and various software packages.

Keywords

Linkage Analysis Qualitative Trait Complete Linkage Disequilibrium Linkage Phase Inheritance Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank Dr. Anand Swaroop for allowing us to present results from the analysis of the AMD data.

References

  1. 1.
    Gusella JSF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306:234–238CrossRefPubMedGoogle Scholar
  2. 2.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517CrossRefPubMedGoogle Scholar
  3. 3.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080CrossRefPubMedGoogle Scholar
  4. 4.
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak, Zielenski J, Lok S, Plavsic N, Chou JL et al. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073CrossRefPubMedGoogle Scholar
  5. 5.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al. (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065CrossRefPubMedGoogle Scholar
  6. 6.
    Wald A (1947) Sequential analysis. Wiley, New YorkGoogle Scholar
  7. 7.
    Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:227–318Google Scholar
  8. 8.
    Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21:523–542CrossRefPubMedGoogle Scholar
  9. 9.
    Clerget-Darpoux F, Bonaiti-Pellie C, Hochez J (1986) Effects of misspecifying genetic parameters in lod score analysis. Biometrics 42:393–399CrossRefPubMedGoogle Scholar
  10. 10.
    Ott J (1974) Estimation of the recombination fraction in human pedigrees: Efficient computation of the likelihood for human linkage studies. Am J Hum Genet 26:588–597PubMedGoogle Scholar
  11. 11.
    Lange K, Elston RC (1975) Extensions to pedigree analysis. I. Likelihood calculations for simple and complex pedigrees. Hum Hered 25:95–105Google Scholar
  12. 12.
    Lange K, Boehnke M (1983) Extensions to pedigree analysis. V. Optimal calculation of Mendelian likelihoods. Hum Hered 33:291–301Google Scholar
  13. 13.
    Lange K, Goradia TM (1987) An algorithm for automatic genotype elimination. Am J Hum Genet 40:250–256PubMedGoogle Scholar
  14. 14.
    Ott J (1976) A computer program for general linkage analysis of human pedigrees. Am J Hum Genet 26:588–597Google Scholar
  15. 15.
    Lathrop GM, Lalouel J, Julier C, Ott J (1984) Strategies for multilocus linkage in humans. Proc Nl Acad Sci USA 81:3443–3446CrossRefGoogle Scholar
  16. 16.
    Cottingham RW Jr, Idury RM, Schaffer AA (1993) Faster sequential genetic linkage computations. Am J Hum Genet 53:252–263PubMedGoogle Scholar
  17. 17.
    O’Connell JR, Weeks DE (1995) The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 11:402–408CrossRefPubMedGoogle Scholar
  18. 18.
    Penrose LS (1935) The detection of autosomal linkage in data which consist of pairs of brothers and sisters of unspecified parentage. Ann Eugenics 6:133–138Google Scholar
  19. 19.
    Risch N (1990) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46: 229–241Google Scholar
  20. 20.
    Thompson EA (1975) The estimation of pairwise relationships. Ann Hum Genet 39:173–188CrossRefPubMedGoogle Scholar
  21. 21.
    Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B 39:1–38Google Scholar
  22. 22.
    Baum LE (1972) An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1–8Google Scholar
  23. 23.
    Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127CrossRefPubMedGoogle Scholar
  24. 24.
    Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188CrossRefPubMedGoogle Scholar
  25. 25.
    Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Nl Acad Sci USA 84:2363–2367CrossRefGoogle Scholar
  26. 26.
    Kruglyak L, Daly M, Reeve-Daly, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363PubMedGoogle Scholar
  27. 27.
    Kruglyak K, Lander ES (1995) Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet 57:439–454PubMedGoogle Scholar
  28. 28.
    Gudbjartsson DF, Jonasson K, Frigge ML, Kong A (2000) Allegro, a new computer program for multipoint linkage analysis. Nat Genet 25:12–13CrossRefPubMedGoogle Scholar
  29. 29.
    Abecasis GR Cherny SS, Cookson WO, Cardon LR (2002) Merlin – rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97–101CrossRefPubMedGoogle Scholar
  30. 30.
    Abecasis GR, Wigginton JE (2005) Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754–767CrossRefPubMedGoogle Scholar
  31. 31.
    Abecasis GR, Yashar BM, Zhao Y, Ghiasvand NM, Zareparsi S, Branham KEH, Reddick AC, Trager EH, Yoshida S, Bahling J, Filippova E, Elner S, Johnson MW, Vine AK, Sieving PA, Jacobson SG, Richards JE, Swaroop A (2004) Age-related macular degeneration: a high-resolution genome scan for susceptibility loci in a population enriched for late-stage disease. Am J Hum Genet 74:482–494CrossRefPubMedGoogle Scholar
  32. 32.
    Klein R, Klein BE, Linton KL (1992) Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99:933–943Google Scholar
  33. 33.
    Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, De Jong PT (1995) The prevalence of age-related maculopathy in the Rottermam study. Ophthalmology 102:205–210PubMedGoogle Scholar
  34. 34.
    Bird AC (2003) Towards an understanding of age-related macular disease. Eye 17:457–466CrossRefPubMedGoogle Scholar
  35. 35.
    Seddon JM, Ajani UA, Mitchell BD (1997) Familial aggregation of age-related maculopathy. Am J Ophthalmol 123:199–206PubMedGoogle Scholar
  36. 36.
    Klaver CCW, Wolfs RCW, Assink JJM, van Duijn CM, Hofman A, de Jong TVM (1998) Genetic risk of age-related maculopahty. Arch Ophthalmol 116:1646–1651PubMedGoogle Scholar
  37. 37.
    Gorin MB, Breitner JC, De Jong PT, Hageman GS, Klaver CC, Kuehn MH, Seddon JM (1999) The genetics of age-related macular degeneration. Mol Vis 5:29PubMedGoogle Scholar
  38. 38.
    Klein ML, Schultz DW, Edwards A, Matise TC, Rust K, Berselli CB, Trzupek K, Weleber RG, Ott J, Wirtz MK, Acott TS (1998) Age-related macular degeneration: clinical features in a large family and linkage to chromosome 1q. Arch Ophthalmol 116:1082–1088PubMedGoogle Scholar
  39. 39.
    Weeks DE, Conley YP, Mah TS, Paul TO, Morse L, Chang NJ, Dailey JP, Ferrell RE, Gorin MB (2000) A full genome scan for age-related maculopathy. Hum Mol Genet 9:1329–1349CrossRefPubMedGoogle Scholar
  40. 40.
    Majewski J, Schultz DW, Weleber RG, Schain MB, Edwards AO, Matise TC, Acott TS, Ott J, Klein ML (2003) Age-related macular degeneration – a genome scan in extended families. Am J Hum Genet 73:540–550CrossRefPubMedGoogle Scholar
  41. 41.
    Seddon JM, Santangelo SL, Book K, Chong S, Cote J (2003) A genomewide scan for age-related macular degeneration provides evidence for linkage to several chromosomal regions. Am J Hum Genet 73:780–790CrossRefPubMedGoogle Scholar
  42. 42.
    Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424CrossRefPubMedGoogle Scholar
  43. 43.
    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, Kwan SY, Noureddine M, Gilbert JR, Schnetz-Boutaud N, Agarwal A, Postel EA, Pericak-Vance MA (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421CrossRefPubMedGoogle Scholar
  44. 44.
    Zareparsi S, Branham KEH, Li M, Shah S, Klein RJ, Ott J, Hoh J, Abecasis GR, Swaroop A (2005) Strong association of the Y402H variant in Complement Factor H at 1q32 with susceptibility to age-related macular degeneration. Am J Hum Genet 77:149–153CrossRefPubMedGoogle Scholar
  45. 45.
    Li M, Boehnke M, Abecasis GR (2006) Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 78:778–792CrossRefPubMedGoogle Scholar
  46. 46.
    Elandt-Johnson RC (1971) Probability models and statistical methods in genetics.Wiley, New YorkGoogle Scholar
  47. 47.
    Hodge SE, Elston RC (1994) Lods, words, and mods: the interpretation of lod scores calculated under different models. Genet Epidemiol 11:329–342CrossRefPubMedGoogle Scholar
  48. 48.
    Sengul H, Weeks DE, Feingold E (2001) A survey of affected-sibship statistics for nonparametric linkage analysis. Am J Hum Genet 69:179–190CrossRefPubMedGoogle Scholar
  49. 49.
    Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, Seddon JM (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38:1055–1059CrossRefPubMedGoogle Scholar
  50. 50.
    Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516PubMedGoogle Scholar
  51. 51.
    Curtis D (1997) Use of siblings as controls in case-control association studies. Ann Hum Genet 61:319–333CrossRefPubMedGoogle Scholar
  52. 52.
    Boehnke M, Langefeld CD (1998) Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am J Hum Genet 62:950–961CrossRefPubMedGoogle Scholar
  53. 53.
    Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am J Hum Genet 62:450–458CrossRefPubMedGoogle Scholar
  54. 54.
    Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67:146–154CrossRefPubMedGoogle Scholar
  55. 55.
    Li M, Boehnke M, Abecasis GR (2005) Joint modeling of linkage and association: identifying SNPs responsible for a linkage signal. Am J Hum Genet 77:149–153CrossRefPubMedGoogle Scholar
  56. 56.
    Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313Google Scholar
  57. 57.
    Self SG, Liang K-Y (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610CrossRefGoogle Scholar
  58. 58.
    Hauser ER, Watanabe RM, Duren WL, Bass MP, Langefeld CD, Boehnke M (2004) Ordered subset analysis in genetic linkage mapping of complex traits. Genetic Epid 27:53–63CrossRefGoogle Scholar
  59. 59.
    Olson JM (1999) A general conditional-logistic model for affected-relative-pair linkage. Am J Hum Genet 65:1760–1769CrossRefPubMedGoogle Scholar
  60. 60.
    Greenwood CMT, Bull SB (1999) Analysis of affected sib pairs, with covariates – with and without constraints. Am J Hum Genet 64:871–885CrossRefPubMedGoogle Scholar
  61. 61.
    Schaid DJ, McDonnell SK, Thibodeau SN (2001) Regression models for linkage heterogeneity applied to familial prostate cancer. Am J Hum Genet 68:1189–1196CrossRefPubMedGoogle Scholar
  62. 62.
    Lange K, Weeks D, Boehnke M (1988) Programs for pedigree analysis: MENDEL, FISHER, and dGENE. Genet Epidemiol 5:471–472CrossRefPubMedGoogle Scholar
  63. 63.
    O’Connell JR, Weeks DE (1998) PedCheck: A program for identifying genotype incompatibilities in linkage analysis. Am J Hum Genet 63:259–266CrossRefPubMedGoogle Scholar
  64. 64.
    Holmans P (1993) Asymptotic properties of affected sib-pair linkage analysis. Am J Hum Genet 52:362–374PubMedGoogle Scholar
  65. 65.
    Weeks DE, Conley YP, Tsai HJ, Mah TS, Schmidt S, Postel EA, Agarwal A, Haines JL, Pericak-Vance MA, Rosenfeld PJ, Paul TO, Eller AW, Morse LS, Dailey JP, Ferrell RE, Gorin MB (2004) Age-related maculopathy: a genomewide scan with continued evidence of susceptibility loci within the 1q31, 10q26, and 17q25 regions. Am J Hum Genet 75:174–189CrossRefPubMedGoogle Scholar
  66. 66.
    Schmidt S, Scott WK, Postel EA, Agarwal A, Hauser ER, De La Paz MA, Gilbert JR, Weeks DE, Gorin MB, Haines JL, Pericak-Vance MA (2004) Ordered subset linkage analysis supports a susceptibility locus for age-related macular degeneration on chromosome 16p12. BMC Genet 5:18CrossRefPubMedGoogle Scholar
  67. 67.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, Sangiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389CrossRefPubMedGoogle Scholar
  68. 68.
    Lathrop GM, Lalouel JM, White RL. (1986). Construction of human linkage maps: likelihood calculations for multilocus linkage analysis. Genet Epidemiol. 3 (1), 39–52CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Biostatistics and EpidemiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  2. 2.Department of Biostatistics, Center for Statistical GeneticsUniversity of Michigan School of Public HealthAnn ArborUSA

Personalised recommendations