Linkage Analysis of Quantitative Traits

  • Christopher I. AmosEmail author
  • Bo Peng
  • Yaji Xu
  • Jianzhong Ma


Nearly three quarters of a century of statistical innovations have resulted from the development of methods to perform genetic linkage analysis in humans and other outbred organisms. Lionel Penrose was among the first investigators to develop methods that could be used to identify genetic linkages for quantitative traits. His methods predated the development of modern likelihood methods or wide acceptance of analysis of variance techniques. He initially sought to partition variance among sibs according to marker similarity [73], assuming particular modes of inheritance. His later publications provided approaches that could be applied for a range of potential inheritance patterns [74]. Oscar Kempthorne [53, 52] developed analysis of variance methods that form a basis for some linkage analytical approaches, building on the earlier work of Sir Ronald Fisher [37]. Fisher developed u-scores which form a basis for efficient score statistics for linkage analysis [38]. Many of the methods developed by these pioneers remain in use, with some modifications to allow their application in a modern era in which thousands of markers are available for analysis in extended families. This chapter reviews the statistical approaches that are now in use for linkage analysis of quantitative data. We first describe the data that we used to demonstrate methods of analysis. Then, we provide a statement of the genetic model and typical likelihood formulation that are applicable for pedigrees. Next, we discuss a variety of linkage methods that have been developed for model-free linkage analysis. Finally, we describe models for multivariate analysis.


Quantitative Trait Linkage Analysis Genetic Epidemiology Extended Pedigree Human Heredity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abecasis GR, Cherny SS, Cookson WO, Cardon LR (2002) Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30(1):97–101CrossRefPubMedGoogle Scholar
  2. 2.
    Allison DB, Neale MC, Zannolli R, Schork NJ, Amos CI, Blangero J (1999) Testing the robustness of the likelihood ratio test in a variance-component quantitative trait loci (QTL) mapping procedure. American Journal of Human Genetics 65:531–544CrossRefPubMedGoogle Scholar
  3. 3.
    Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 62:1198–1211CrossRefPubMedGoogle Scholar
  4. 4.
    Almasy L, Dyer TD, Blangero J (1997) Bivariate quantitative trait linkage analysis: Pleiotropy versus co-incident linkages. Genetic Epidemiology 14:953–958CrossRefPubMedGoogle Scholar
  5. 5.
    Amos CI (1988) Robust methods for detection of genetic linkage for data from extended families and pedigrees. PhD dissertation, Louisiana State University Medical Center-New OrleansGoogle Scholar
  6. 6.
    Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. American Journal of Human Genetics 54:535–543PubMedGoogle Scholar
  7. 7.
    Amos CI, de Andrade M (2001) Genetic linkage methods for quantitative traits. Statistical Methods for Medical Research 10:3–25CrossRefGoogle Scholar
  8. 8.
    Amos CI, Elston RC (1989) Robust methods for the detection of genetic linkage for quantitative data from pedigrees. Genetic Epidemiology 6:349–361CrossRefPubMedGoogle Scholar
  9. 9.
    Amos CI, Dawson DV, Elston RC (1990) The probabilistic determination of identity-by-descent sharing for pairs of relatives from pedigrees. American Journal of Human Genetics 47:842–853PubMedGoogle Scholar
  10. 10.
    Amos CI, Zhu D, Boerwinkle E (1996) Assessing genetic linkage and association with robust components of variance approaches. Annals of Human Genetics 60:143–160CrossRefPubMedGoogle Scholar
  11. 11.
    Amos CI, Krushkal J, Thiel TJ, Young A, Zhu DK, Boerwinkle E, de Andrade M (1997) Comparison of model-free linkage mapping strategies for the study of a complex trait. Genetic Epidemiology 14:743–748CrossRefPubMedGoogle Scholar
  12. 12.
    Amos CI, Gu X, Chen J, Davis BR (2000) Least squares estimation of variance components for linkage. Genetic Epidemiology 19(Supplement 1):S1–S7Google Scholar
  13. 13.
    Amos CI, de Andrade M, Zhu D (2001) Comparison of multivariate tests for genetic linkage. Human Heredity 51:133–144CrossRefPubMedGoogle Scholar
  14. 14.
    Barnholz JS, de Andrade M, Page GP, King TM, Peterson LE, Amos CI (1999) Assessing linkage of monoamine oxidase b (MAOB) in a genome-wide scan of 285 markers on 22 chromosomes using univariate variance components approach. Genetic Epidemiology 17(Supplement):S49–54Google Scholar
  15. 15.
    Blangero J, Williams JT, Almasy L (2001) Variance component methods for detecting complex trait loci. Advances in Genetics 42:151–181CrossRefPubMedGoogle Scholar
  16. 16.
    Boerwinkle E, Sing CF (1987) The use of measured genotype information in the analysis of quantitative phenotypes in man: III. Simultaneous estimation of the frequencies and effects of the apolipoprotein e polymorphism and residual polygenetic effects on cholesterol, betalipoprotein, and triglyceride levels. Annals of Human Genetics 51:211–226CrossRefPubMedGoogle Scholar
  17. 17.
    Boerwinkle E, Chakraborty R, Sing CF (1986) The use of measured genotype information in the analysis of quantitative phenotypes in man: I. Models and analytical methods. Annals of Human Genetics 50:181–194CrossRefGoogle Scholar
  18. 18.
    Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH (1992) Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. Journal of Clinical Investigation 90:52–60CrossRefPubMedGoogle Scholar
  19. 19.
    Cardon LR, Fulker DW (1994) The power of interval-mapping of quantitative trait loci using selected sib pairs. American Journal of Human Genetics 55:825–833PubMedGoogle Scholar
  20. 20.
    Chen WM, Abecasis GR (2006) Estimating the power of variance component linkage analysis in large pedigrees. Genetic Epidemiology 30:471–484CrossRefPubMedGoogle Scholar
  21. 21.
    Chen WM, Broman KW, Liang KY (2004) Quantitative trait linkage analysis by generalized estimating equations: unification of variance components and Haseman-Elston regression. Genetic Epidemiology 26:265–272CrossRefPubMedGoogle Scholar
  22. 22.
    Chen WM, Broman KW, Liang KY (2005) Power and robustness of linkage tests for quantitative traits in general pedigrees. Genetic Epidemiology 28(1):11–23CrossRefPubMedGoogle Scholar
  23. 23.
    Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen K, Morley M, Spielman RS (2003) Natural variation in human gene expression assessed in lymphoblastoid cells. Nature Genetics 33: 422–425CrossRefPubMedGoogle Scholar
  24. 24.
    Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT (2005) Mapping determinants of human gene expression by regional and genome-wide association. Nature 437:1365–1369CrossRefPubMedGoogle Scholar
  25. 25.
    Clerget-Darpoux F, Bonaïti-Pellié C, Hochez J (1986) Effects of misspecifying genetic parameters in LOD score analysis. Biometrics 42:393–399CrossRefPubMedGoogle Scholar
  26. 26.
    Cottingham R, Idury RM, Schäffer AA (1993) Faster sequential genetic linkage computations. American Journal of Human Genetics 53(1):252–263PubMedGoogle Scholar
  27. 27.
    Crow JF (1986) Basic concepts in population, quantitative, and evolutionary genetics. W.H. Freeman and Co., New YorkGoogle Scholar
  28. 28.
    Curtis D, Sham PC (1994) Using risk calculation to implement an extended relative pair analysis. Annals of Human Genetics 58:151–162CrossRefPubMedGoogle Scholar
  29. 29.
    Davis S, Schroeder M, Goldin LR, Weeks DE (1996) Nonparametric simulation-based statistics for detecting linkage in general pedigrees. American Journal of Human Genetics 58:867–880PubMedGoogle Scholar
  30. 30.
    de Andrade M, Amos CI, Thiel T (1999) Methods to estimate the genetic component of variance for quantitative traits in families. Genetic Epidemiology 17:64–76CrossRefPubMedGoogle Scholar
  31. 31.
    Diao G, Lin DY (2005) A powerful and robust method for mapping quantitative trait loci in general pedigrees. American Journal of Human Genetics 77:97–111CrossRefPubMedGoogle Scholar
  32. 32.
    Drigalenko E (1998) How sib-pairs reveal linkage. American Journal of Human Genetics 63:1243–1245CrossRefGoogle Scholar
  33. 33.
    Eaves LJ, Neale MC, Maes H (1996) Multivariate multipoint linkage analysis of quantitative trait loci. Behavior Genetics 26:519–525CrossRefPubMedGoogle Scholar
  34. 34.
    Elston RC, Stewart J (1971) A general model for the genetic analysis of pedigree data. Human Heredity 21:523–542CrossRefPubMedGoogle Scholar
  35. 35.
    Elston RC, Buxbaum S, Jacobs KB, Olson JM (1998) Haseman and elston revisited. Presented at the International Genetic Epidemiology SocietyGoogle Scholar
  36. 36.
    Elston RC, Buxbaum S, Jacobs KB, Olson JM (2000) Haseman and Elston revisited. Genetic Epidemiology 19(1):1–17CrossRefPubMedGoogle Scholar
  37. 37.
    Fisher RA (1918) The correlation in relatives on the supposition of Mendelian inheritance. Transactions of the Royal Statistical Society, Edinburgh 52:399–433Google Scholar
  38. 38.
    Fisher RA (1935) The detection of linkage with autosomal dominant abnormalities. Annals of Eugenics 6:187–201Google Scholar
  39. 39.
    Fulker DW, Cardon LR (1994) A sib-pair approach to interval mapping of quantitative trait loci. American Journal of Human Genetics 54:1092–1103PubMedGoogle Scholar
  40. 40.
    Fulker DW, Cherny SS (1996) An improved multipoint sib-pair analysis of quantitative traits. Behavior Genetics 26:527–532CrossRefPubMedGoogle Scholar
  41. 41.
    Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined linkage and association sib-pair analysis for quantitative traits. American Journal of Human Genetics 64:259–267CrossRefPubMedGoogle Scholar
  42. 42.
    Gessler DD, Xu S (1996) Using the expectation or the distribution of the identity by descent for mapping quantitative trait loci under the random model. American Journal of Human Genetics 59:1382–1390PubMedGoogle Scholar
  43. 43.
    Goldgar DE, Oniki RS (1992) Comparison of multipoint identity-by-descent method with parametric multipoint linkage analysis for mapping quantitative traits. American Journal of Human Genetics 50:598–606PubMedGoogle Scholar
  44. 44.
    Göring HH, Williams JT, Blangero J (2001) Linkage analysis of quantitative traits in randomly ascertained pedigrees: comparison of penetrance-based and variance component analysis. Genetic Epidemiology 21 Supplement:S783–S788Google Scholar
  45. 45.
    Gorlova OY, Weng S, Zhang Y, Amos CI, Spitz MR (2007) Aggregation of cancer among relatives of never-smoking lung cancer patients. International Journal of Cancer 121(1): 111–118CrossRefGoogle Scholar
  46. 46.
    Guerra R, Wan Y, Jia A, Amos CI, Cohen JC (1999) Testing for linkage under robust genetic models. Human Heredity 49(3):146–153CrossRefPubMedGoogle Scholar
  47. 47.
    Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics 2:3–19CrossRefPubMedGoogle Scholar
  48. 48.
    Heath SC (1997) Markov Chain Monte Carlo segregation and linkage analysis for oligogenic models. American Journal of Human Genetics 61:748–760CrossRefPubMedGoogle Scholar
  49. 49.
    Hopper JL (1993) Variance components for statistical genetics: applications in medical research to characteristic related to diseases and health. Statistical Methods in Medical Research 2:199–223CrossRefPubMedGoogle Scholar
  50. 50.
    Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127PubMedGoogle Scholar
  51. 51.
    Kammerer CM, MacCluer JW (1985) Comparison of two preliminary methods of quantitative linkage analysis. Human Heredity 35:319–325CrossRefPubMedGoogle Scholar
  52. 52.
    Kempthorne O (1957) An Introduction to Genetic Statistics. Wiley, New YorkGoogle Scholar
  53. 53.
    Kempthorne O, Horner TW (1955) The theoretical correlations of relatives in random mating populations. Genetics 40:153–167PubMedGoogle Scholar
  54. 54.
    Kong A, Cox NJ (1997) Allele sharing models – LOD scores and accurate linkage tests. American Journal of Human Genetics 61:1179–1188CrossRefPubMedGoogle Scholar
  55. 55.
    Kruglyak L, Lander ES (1995) Complete multipoint sib pair analysis of qualitative and quantitative traits. American Journal of Human Genetics 57:439–454PubMedGoogle Scholar
  56. 56.
    Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences USA 84:2363–2367CrossRefGoogle Scholar
  57. 57.
    Lange K, Cantor R, Horvath S, Perola M, Sabatti C, Sinsheimer J, Sobel E (2001) Mendel version 4.0: A complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. American Journal of Human Genetics 69(Supplement):504Google Scholar
  58. 58.
    Lathrop GM, Lalouel JM, Julier C, Ott J (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. American Journal of Human Genetics 37(3):482–498PubMedGoogle Scholar
  59. 59.
    Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22CrossRefGoogle Scholar
  60. 60.
    Ma J, Amos CI, Daw EW (2007) Ascertainment correction for Markov chain Monte Carlo segregation and linkage analysis of a quantitative trait. Genetic Epidemiology 31(6):594–604CrossRefPubMedGoogle Scholar
  61. 61.
    Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL analysis. Biometrics 54:88–99CrossRefGoogle Scholar
  62. 62.
    Marlow AJ, Fisher SE, Francks C, MacPhie IL, Cherny SS, Richardson AJ, Talcott JB, Stein JF, Monaco AP, Cardon LR (2003) Use of multivariate linkage analysis for dissection of a complex cognitive trait. American Journal of Human Genetics 72(3):561–570CrossRefPubMedGoogle Scholar
  63. 63.
    Martin N, Boomsma D, Machin G (1997) A twin-pronged attack on complex traits. Nature Genetics 17:387–392CrossRefPubMedGoogle Scholar
  64. 64.
    McPeek MS, Sun L (2000) Statistical tests for detection of misspecified relationships by use of genome-screen data. American Journal of Human Genetics 66:1076–1094CrossRefPubMedGoogle Scholar
  65. 65.
    Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:733–734CrossRefGoogle Scholar
  66. 66.
    Neale BM, Ferreira MAR, Medland SE, Posthuma D (eds) (2007) Statistical Genetics: Gene Mapping Through Linkage and Association. Taylor and Francis, LondonGoogle Scholar
  67. 67.
    Neale MC, Cardon LR (1992) Methodology for the Study of Twins and Families (NATO ASI Series D: Behavioral and Social Sciences, Vol. 67). Kluwer Academic, Dordrecht, The NetherlandsGoogle Scholar
  68. 68.
    Nelder JA, Pregibon D (1987) An extended quasi-likelihood function. Biometrika 74:221–232CrossRefGoogle Scholar
  69. 69.
    Olson JM, Wijsman E (1993) Linkage between quantitative trait and marker locus: Methods using all relative pairs. Genetic Epidemiology 10:87–102CrossRefPubMedGoogle Scholar
  70. 70.
    Ott J (1999) Analysis of Human Genetic Linkage, 3rd edn. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  71. 71.
    Page GP, Amos CI, Boerwinkle E (1998) Exclusion and linkage using the QLOD approach. American Journal of Human Genetics 62:962–968CrossRefPubMedGoogle Scholar
  72. 72.
    Peng B, Yu RK, DeHoff KL, Amos CI (2007) Normalizing a large number of quantitative traits using empirical normal quantile transformation. BMC Proceedings 1(Supplement 1):S156Google Scholar
  73. 73.
    Penrose LS (1938) Genetic linkage in graded human characters. Annals of Eugenics 8:233–238Google Scholar
  74. 74.
    Penrose LS (1946) A further note on the sib-pair linkage method. Annals of Eugenics 13:25–29Google Scholar
  75. 75.
    Prentice RL, Zhao LP (1991) Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 47:825–839CrossRefPubMedGoogle Scholar
  76. 76.
    Schork NJ (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency power, and modeling considerations. American Journal of Human Genetics 53:1306–1319PubMedGoogle Scholar
  77. 77.
    Searle SR, Casella G, McCulloch CE (1992) Variance Components. Wiley, New YorkCrossRefGoogle Scholar
  78. 78.
    Self SG, Liang KY (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. Journal of American Statistical Association 82:605–610CrossRefGoogle Scholar
  79. 79.
    Sham PC, Purcell S, Cherny SS, Abecasis GR (2002) Powerful regression-based quantitative-trait linkage analysis of general pedigrees. American Journal of Human Genetics 71:238–253CrossRefPubMedGoogle Scholar
  80. 80.
    Shete S, Amos CI, Hwang SJ, Strong LC (2002) Individual-specific liability groups in genetic linkage, with applications to kindreds with Li-Fraumeni syndrome. American Journal of Human Genetics 70(3):813–817CrossRefPubMedGoogle Scholar
  81. 81.
    Shete S, Jacobs KB, Elston RC (2003) Adding further power to the Haseman and Elston method for detecting linkage in larger sibships: weighting sums and differences. Human Heredity 55:79–85CrossRefPubMedGoogle Scholar
  82. 82.
    Sung YJ, Thompson EA, Wijsman EM (2007) MCMC-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component. Genetic Epidemiology 31(2):103–114CrossRefPubMedGoogle Scholar
  83. 83.
    Tiwari HK, Elston RC (1997) Deriving components of genetic variance for multilocus models. Genetic Epidemiology 14(6):1131–1136CrossRefPubMedGoogle Scholar
  84. 84.
    Todorov AA, Vogler GP, Gu C, Province MA, Li Z, Heath AC, Rao DC (1998) Testing causal hypotheses in multivariate linkage analysis of quantitative traits: general formulation and application to sibpair data. Genetic Epidemiology 15:263–278CrossRefPubMedGoogle Scholar
  85. 85.
    Wang J, Guerra R, Cohen J (1998) A statistically robust variance component approach for quantitative trait linkage analysis. Annals of Human Genetics 62:349–359CrossRefPubMedGoogle Scholar
  86. 86.
    Wang J, Guerra R, Cohen J (1999) Least squares estimation of variance components for linkage. Annals of Human Genetics 63:249–262CrossRefPubMedGoogle Scholar
  87. 87.
    Wang K, Huang J (2002) A score-statistic approach for the mapping of quantitative-trait loci with sibships of arbitrary size. American Journal of Human Genetics 70:412–424CrossRefPubMedGoogle Scholar
  88. 88.
    Whittemore AS, Halpern J (1994) A class of tests for linkage using affected pedigree members. Biometrics 50:118–127CrossRefPubMedGoogle Scholar
  89. 89.
    Wijsman EM, Amos CI (1997) Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: Summary of GAW10 contributions. Genetic Epidemiology 14:719–735CrossRefPubMedGoogle Scholar
  90. 90.
    Williams JT, Blangero J (1999) Power of variance component linkage analysis to detect quantitative trait loci. Annals of Human Genetics 63:545–563CrossRefPubMedGoogle Scholar
  91. 91.
    Wright FA, Kong A (1997) Linkage mapping in experimental crosses: the robustness of single-gene models. Genetics 146:417–425PubMedGoogle Scholar
  92. 92.
    Yu R, DeHoff K, Amos CI, Shete S (2007) Seeking gene relationships in gene expression data using support vector machine regression. BMC Proceedings 1(Supplement 1):S51Google Scholar
  93. 93.
    Zhang H, Risch N (1996) Mapping quantitative-trait loci in humans by use of extreme concordant sib pairs: selected sampling by parental phenotypes. American Journal of Human Genetics 59:951–957PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christopher I. Amos
    • 1
    Email author
  • Bo Peng
    • 1
  • Yaji Xu
    • 1
  • Jianzhong Ma
    • 1
  1. 1.Department of EpidemiologyThe University of Texas M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations