Advertisement

Pulsed Laser Deposition of ZnO-Based Thin Films

  • M. Lorenz
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 104)

Pulsed laser deposition (PLD) is a growth method for thin films by condensation of a laser plasma ablated from a single target, excited by the high-energy laser pulses far from equilibrium. First, the PLD technique is briefly described beginning with the history and the fundamental processes. In the main part, the suitability of PLD as a fast and flexible exploratory research technique for high-quality ZnO-based thin film heterostructures is demonstrated by reviewing recent results. Finally, the innovative potential inherent to PLD will be demonstrated by mentioning advanced PLD techniques, including a high-pressure PLD process for free-standing ZnO-based nanowire arrays.

Keywords

Pulse Laser Deposition Schottky Contact Magnetic Force Microscopy Bragg Structure Pulse Laser Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.T. Cheung, History and Fundamentals of Pulsed Laser Deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 1-22Google Scholar
  2. 2.
    D. Bäuerle, Laser Chemical Processing. In: Landolt-Börnstein New Series, Group VIII Advanced Materials and Technologies, Vol. 1 Laser Physics and Applications, Subvolume C Laser Applications, ed. by R. Poprawe, H. Weber, G. Herziger (Springer, Berlin 2004) pp 311-354Google Scholar
  3. 3.
    G.W. Martin, L.A. Doyle, A. Al-Kateeb, I. Weaver, D. Riley, M.J. Lamb, T. Morrow, C.L.S. Lewis, Appl. Surf. Sci. 127-129, 710 (1998)ADSGoogle Scholar
  4. 4.
    A. Husmann, Pulsed Laser Deposition mittels gütegeschalteter CO2 -Laser. PhD Thesis, RWTH Aachen, Aachen (1999)Google Scholar
  5. 5.
    T. Venkatesan, Pulsed Laser Deposition - Future Trends. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 313-326Google Scholar
  6. 6.
    J.S. Horwitz, Film Nucleation and Film Growth in Pulsed Laser Deposition of Ceramics. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 229-254Google Scholar
  7. 7.
    M. Lorenz, S. Becker, H.-J. Dietze, W. Schmitz, B. Brunner, K.F. Renk, Physica C 182, 114 (1991)ADSGoogle Scholar
  8. 8.
    M. Lorenz, H. Hochmuth, D. Natusch, M. Kusunoki, V.L. Svetchnikov, V. Riede, I. Stanca, G. Kästner, D. Hesse, IEEE Trans. Appl. Supercond. 11,3209 (2001)Google Scholar
  9. 9.
    J.A. Greer, Commercial Scale-Up of Pulsed Laser Deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 293-312Google Scholar
  10. 10.
    M. Lorenz, H. Hochmuth, D. Natusch, H. Börner, K. Kreher, W. Schmitz, Appl. Phys. Lett. 68, 3332 (1996)ADSGoogle Scholar
  11. 11.
    J.S. Horwitz, D.B. Chrisey, R.M. Stroud, A.C. Carter, J. Kim, W. Chang, J.M. Pond, S.W. Kirchoefer, M.S. Osofsky, D. Koller, Appl. Surf. Sci. 127-129, 507 (1998)ADSGoogle Scholar
  12. 12.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin Heidelberg Newyork, 2000), pp 3-100Google Scholar
  13. 13.
    L.A. Doyle, G.W. Martin, A. Al-Kateeb, I. Weaver, D. Riley, M.J. Lamb, T. Morrow, C.L.S. Lewis, Appl. Surf. Sci. 127-129, 716 (1998)ADSGoogle Scholar
  14. 14.
    Applied X-ray Optics AXO Dresden GmbH, Heidenau, Germany, http:// www.axo-dresden.de 15. AxynTeC Dünnschichttechnik GmbH, Augsburg, Germany, http:// www.axyntec.de
  15. 16.
    nanovation SARL, Orsay, France, http://www.nanovation.biz
  16. 17.
    B. Angstenberger, Fliehkraftunterstütztes Laserbeschichten. PhD Thesis, Universität Stuttgart, Stuttgart (2000)Google Scholar
  17. 18.
    E.W. Kreutz, Appl. Surf. Sci. 127-129, 606 (1998)ADSGoogle Scholar
  18. 19.
    K.L. Saenger, Angular Distribution of Ablated Material. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 199-228Google Scholar
  19. 20.
    L.-C. Chen, Particulates Generated by Pulsed Laser Ablation. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 167-198Google Scholar
  20. 21.
    A.E. Tselev, Cross-beam pulsed laser deposition as a method for preparation of thin films of metastable solid solutions. PhD Thesis, TU Dresden, Dresden (2000)Google Scholar
  21. 22.
    A. Ohtomo, A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005)ADSGoogle Scholar
  22. 23.
    D.B. Geohegan, Diagnostics and Characteristics of Laser-Produced Plasmas. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 115-166Google Scholar
  23. 24.
    H. Hügel, F. Dausinger, Fundamentals of Laser-Induced Processes. In: Landolt-Börnstein New Series, Group VIII Advanced Materials and Technologies, Vol. 1 Laser Physics and Applications, Subvolume C Laser Applications, ed by R. Poprawe, H. Weber, G. Herziger (Springer, Berlin Heidelberg New York 2004) pp 311-354Google Scholar
  24. 25.
    J. Gottmann, Dynamik der Schichtabscheidung von Keramiken mit KrFExcimer-Laserstrahlung. PhD Thesis, RWTH Aachen, Aachen (2001)Google Scholar
  25. 26.
    R. Kelly, A. Miotello, Mechanisms of Pulsed Laser Sputtering. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 55-88Google Scholar
  26. 27.
    S.R. Foltyn, Surface Modification of Materials by Cumulative Laser Irradiation. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp. 89-114Google Scholar
  27. 28.
    R.E. Leuchtner, Appl. Surf. Sci. 127-129, 626 (1998)ADSGoogle Scholar
  28. 29.
    Y. Kawaguchi, A. Narazaki, T. Sato, H. Niino, A. Yabe, Appl. Surf. Sci. 197-198, 268 (2002)ADSGoogle Scholar
  29. 30.
    S. Metev, Process Characteristics and Film Properties in Pulsed Laser Deposition. In: Pulsed Laser Deposition of Thin Films, ed. by D.B. Chrisey, G.H. Hubler (Wiley, New York Chichester Brisbane Toronto Singapore 1994) pp 229-254Google Scholar
  30. 31.
    S. Ohashi, M. Lippmaa, N. Nakagawa, H. Nagasawa, H. Koinuma, M. Kawasaki, Rev. Sci. Instrum. 70, 178 (1999)ADSGoogle Scholar
  31. 32.
    Information sheet LPX300i Series 1996 and 2004, Coherent Lambda Physik GmbH, Göttingen, Germany, http://www.lambdaphysik.com
  32. 33.
    Information sheet YG980 Pulsed Nd:YAG Laser Specifications, http://www. quantel.fr/uk/, for more details see http://www.bigskylaser.0com/pdf/yg980web.pdf
  33. 34.
    Neocera Inc., Beltsville, MD, U.S.A., http://www.neocera.com
  34. 35.
    Twente Solid State Technology B.V., Hengelo, Netherlands, http:// www.tsst.nl
  35. 36.
    Koinuma-Kawasaki Mobile Combinatorial PLD, Huntington Mechanical Laboratories Inc, Mountain View, CA, U.S.A., http://www.huntvac.com/PLD/
  36. 37.
    PVD Products Inc., Wilmington, MA, U.S.A., http://www.pvdproducts.com
  37. 38.
    Surface, Hückelhofen, Germany, http://www.surface-tec.com
  38. 39.
    DCA instruments Oy, Turku, Finland, http://www.dca.fi
  39. 40.
    Pascal Technologies Inc., Fredericksburg, VA, U.S.A., http:// www.pascaltechnologies.com
  40. 41.
    Ü Ö zgür, Ya. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)ADSGoogle Scholar
  41. 42.
    R. Tribulet, J. Perrière, Prog. Cryst. Growth Charact. Mater. 47, 65 (2003)Google Scholar
  42. 43.
    D.C. Look, B. Claflin, Phys. Stat. Sol. B 241, 624 (2004)ADSGoogle Scholar
  43. 44.
    C. Liu, F. Yun, H. Morkoç, J. Mater. Sci. 16, 555 (2005)Google Scholar
  44. 45.
    T. Yao, Zinc Oxide. In: Encyclopedia of Materials: Science and Technology, (Elsevier, Amsterdam London 2001) pp 9883-9888Google Scholar
  45. 46.
    W. Hirschwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hoffmann, S. Krebs, R. Littbarski, G. Neumann, M. Grunze, D. Kolb, H.J. Schulz, Zinc Oxide. In: Current Topics in Materials Science, Vol. 7, ed. by E. Kaldis (North Holland, Amsterdam 1981) pp 143-482Google Scholar
  46. 47.
    A. Rahm, High-resolution X-ray diffraction of ZnO-based thin films. Diploma thesis, Universität Leipzig, Leipzig (2003)Google Scholar
  47. 48.
    M. Lorenz, H. Hochmuth, H. von Wenckstern, H. Schmid, W. Mader, M. Grundmann, Crystalline nanostructure of PLD ZnO and MgZnO thin films on sapphire. In: Universität Leipzig, The Physics Institutes Report 2004, ed. by M. Grundmann (Leipzig 2005) p 156Google Scholar
  48. 49.
    S. Heitsch, C. Bundesmann, G. Wagner, G. Zimmermann, A. Rahm, H. Hochmuth, G. Benndorf, H. Schmidt, M. Schubert, M. Lorenz, H. Schmidt, M. Schubert, M. Grundmann, Thin Solid Films 496, 234 (2006)ADSGoogle Scholar
  49. 50.
    M. Lorenz, H. Hochmuth, A. Jammoul, G. Ferro, C. Förster, J. Pezoldt, J. Zuniga Perez, G. Benndorf, J. Lenzner, R. Schmidt-Grund, M. Grundmann, Wissenschaftlich-Technische Berichte of Research Center Rossendorf FZR433,74 (2005)Google Scholar
  50. 51.
    E.M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)ADSGoogle Scholar
  51. 52.
    Y.F. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)ADSGoogle Scholar
  52. 53.
    S. Heitsch, G. Benndorf, G. Zimmermann, C. Schulz, D. Spemann, H. Hochmuth, H. Schmidt, Th. Nobis, M. Lorenz, M. Grundmann, Appl. Phys. A 88, 99 (2007)ADSGoogle Scholar
  53. 54.
    M. Lorenz, H. Hochmuth, J. Lenzner, M. Brandt, H. von Wenckstern, G. Benndorf, M. Grundmann, Wissenschaftlich-Technische Berichte of Research Center Rossendorf FZR-433, 57 (2005)Google Scholar
  54. 55.
    M. Grundmann, H. von Wenckstern, R. Pickenhain, Th. Nobis, A. Rahm, M. Lorenz, Superlatt. Microstruct. 38, 317 (2005)ADSGoogle Scholar
  55. 56.
    M. Lorenz, E.M. Kaidashev, H. von Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H.-C. Semmelhack, M. Grundmann, Solid State Electron. 47, 2205 (2003)ADSGoogle Scholar
  56. 57.
    H. von Wenckstern, S. Weinhold, G. Biehne, R. Pickenhain, H. Schmidt, H. Hochmuth, M. Grundmann, Donor Levels in ZnO. In: Advances in Solid State Physics, Vol. 45, ed. by B. Kramer (Springer, Berlin Heidelberg New York 2005) pp 263-275Google Scholar
  57. 58.
    H. von Wenckstern, G. Benndorf, S. Heitsch, J. Sann, M. Brandt, H. Schmidt, J. Lenzner, M. Lorenz, A.Y. Kuznetsov, B.K. Meyer, M. Grundmann, Appl. Phys. A 88, 125 (2007)ADSGoogle Scholar
  58. 59.
    H. von Wenckstern, M. Brandt, H. Schmidt, G. Biehne, R. Pickenhain, H. Hochmuth, M. Lorenz, M. Grundmann, Appl. Phys. A 88, 135 (2007)ADSGoogle Scholar
  59. 60.
    H. von Wenckstern, E.M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, M. Grundmann, Appl. Phys. Lett. 84,79 (2004)ADSGoogle Scholar
  60. 61.
    M. Grundmann, H. von Wenckstern, Proc. FVS-Workshop TCOs für Dünnschichtsolarzellen und andere Anwendungen, Freyburg, Germany, 10-12. April 2005, Hahn-Meitner-Institut BerlinGoogle Scholar
  61. 62.
    B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Sol. B 241, 231 (2004)ADSGoogle Scholar
  62. 63.
    W. Czakai, Photolumineszenz an ZnO. Diploma thesis, Universität Leipzig, Leipzig (2004)Google Scholar
  63. 64.
    M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I.L. Krestnikov, A. Hoffmann, O. Gelhausen, M.R. Phillips, H.R. Alves, A. Zeuner, D.M. Hofmann, B.K. Meyer, Phys. Stat. Sol. B 241, 607 (2004)ADSGoogle Scholar
  64. 65.
    D. Spemann, E.M. Kaidashev, M. Lorenz, J. Vogt, T. Butz, Nucl. Instrum. Meth. B 219-220, 891 (2004)ADSGoogle Scholar
  65. 66.
    C. Bundesmann, M. Schubert, D. Spemann, T. Butz, M. Lorenz, E.M. Kaidashev, M. Grundmann, N. Ashkenov, H. Neumann, G. Wagner, Appl. Phys. Lett. 81, 2376 (2002)ADSGoogle Scholar
  66. 67.
    C. Bundesmann, M. Schubert, D. Spemann, A. Rahm, H. Hochmuth, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 85, 905 (2004)ADSGoogle Scholar
  67. 68.
    C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, M. Schubert, J. Appl. Phys. 99, 113504 (2006)Google Scholar
  68. 69.
    R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 82, 2260 (2003)ADSGoogle Scholar
  69. 70.
    R. Schmidt-Grund, M. Schubert, B. Rheinländer, D. Fritsch, H. Schmidt, E.M. Kaidashev, M. Lorenz, C.M. Herzinger, M. Grundmann, Thin Solid Films 455-456, 500 (2004)ADSGoogle Scholar
  70. 71.
    R. Schmidt-Grund, A. Carstens, B. Rheinländer, D. Spemann, H. Hochmut, G. Zimmermann, M. Lorenz, M. Grundmann, C.M. Herzinger, M. Schubert, J. Appl. Phys. 99, 123701 (2006)ADSGoogle Scholar
  71. 72.
    J. Zuniga-Perez, V. Munoz-Sanjose, M. Lorenz, G. Benndorf, S. Heitsch, D. Spemann, M. Grundmann, J. Appl. Phys. 99, 023514 (2006)ADSGoogle Scholar
  72. 73.
    J. Zuniga Perez, V. Munoz-Sanjose, M. Lorenz, H. Hochmuth, G. Benndorf, S. Heitsch, D. Spemann, M. Grundmann, Third SOXESS workshop on ZnO, EC Contract G5RT-CT-2002-05075, 28 September - 1 October 2005, Gallipoli, Italy, Poster p.13Google Scholar
  73. 74.
    C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 83, 1974 (2003)ADSGoogle Scholar
  74. 75.
    S. Heitsch, Photoluminescence of p-doped ZnO thin films. M.Sc. thesis, Universität Leipzig, Leipzig (2003)Google Scholar
  75. 76.
    H. von Wenckstern, S. Heitsch, G. Benndorf, D. Spemann, E.M. Kaidashev, M. Lorenz, M. Grundmann, AIP Conf. Proc. 772, 183 (2005)Google Scholar
  76. 77.
    M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, G. Benndorf, J. Lenzner, D. Spemann, A. Setzer, K.-W. Nielsen, P. Esquinazi, M. Grundmann, Thin Solid Films 486, 117 (2005)ADSGoogle Scholar
  77. 78.
    H. Schmidt, M. Diaconu, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, A. Pöppl, D. Spemann, K.W. Nielsen, R. Gross, G. Wagner, M. Grundmann, Superlatt. Microstruct. 39, 334 (2006)ADSGoogle Scholar
  78. 79.
    M. Diaconu, H. Schmidt, A. Pöppl, R. Böttcher, J. Hoentsch, A. Klunker, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, Phys. Rev. B 72, 085214 (2005)ADSGoogle Scholar
  79. 80.
    M. Diaconu, H. Schmidt, A. Pöppl, R. Böttcher, J. Hoentsch, A. Rahm, H. Hochmuth, M. Lorenz M. Grundmann, Superlatt. Microstruct. 38, 413 (2005)ADSGoogle Scholar
  80. 81.
    H. Schmidt, M. Diaconu, H. Hochmuth, G. Benndorf, H. von Wenckstern, G. Biehne, M. Lorenz, M. Grundmann, Appl. Phys. A 88, 157 (2007)ADSGoogle Scholar
  81. 82.
    M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, H. von Wenckstern, G. Biehne, M. Grundmann, Solid State Commun. 137, 417 (2006)ADSGoogle Scholar
  82. 83.
    Qingyu Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. SchmidtGrund, D. Spemann, A. Rahm, M. Grundmann, Thin Solid Films 515, 2549 (2006)ADSGoogle Scholar
  83. 84.
    Qingyu Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. SchmidtGrund, C. Sturm, D. Spemann, M. Grundmann, Phys. Rev. B 73, 205342 (2006)ADSGoogle Scholar
  84. 85.
    M. Ungureanu, H. Schmidt, Q.Y. Xu, H. von Wenckstern, D. Spemann, H. Hochmuth, M. Lorenz, M. Grundmann, E-MRS Spring Meeting, Nice, 29 May to 2 June 2006, Symposium K: ZnO and related materials, Poster K PII 02Google Scholar
  85. 86.
    M. Schubert, N. Ashkenov, T. Hofmann, M. Lorenz, H. Hochmuth, H. von Wenckstern, M. Grundmann, G. Wagner, Ann. Phys. (Leipzig) 13, 61 (2004)ADSGoogle Scholar
  86. 87.
    N. Ashkenov, M. Schubert, E. Twerdowski, B.N. Mbenkum, H. Hochmuth, M. Lorenz, H.V. Wenckstern, W. Grill, M. Grundmann, Thin Solid Films 486,153 (2005)ADSGoogle Scholar
  87. 88.
    B.N. Mbenkum, N. Ashkenov, M. Schubert, M. Lorenz, H. Hochmuth, D. Michel, M. Grundmann, G. Wagner, Appl. Phys. Lett. 86, 091904 (2005)ADSGoogle Scholar
  88. 89.
    M. Lorenz, H. Hochmuth, J. Lenzner, T. Nobis, G. Zimmermann, M. Diaconu, H. Schmidt, H. von Wenckstern, M. Grundmann, Thin Solid Films 486, 205 (2005)ADSGoogle Scholar
  89. 90.
    R. Johne, M. Lorenz, H. Hochmuth, J. Lenzner, H. von Wenckstern, G. Zimmermann, H. Schmidt, R. Schmidt-Grund, M. Grundmann, Appl. Phys. A 88,89 (2007)ADSGoogle Scholar
  90. 91.
    W.W. Moses, Nucl. Instrum. Meth. A 487, 123 (2002)ADSGoogle Scholar
  91. 92.
    S.E. Derenzo, M.J. Weber, E. Bourret-Courchesne, M.K. Klintenberg, Nucl. Instrum. Meth. A 505, 111 (2003)ADSGoogle Scholar
  92. 93.
    R. Johne, Kathodolumineszenz-Untersuchung von ZnO-Dünnfilmen für Szintillator-Anwendungen - Experiment und Modellierung. Diploma thesis, Universität Leipzig, Leipzig (2006)Google Scholar
  93. 94.
    M. Lorenz, H. Hochmuth, R. Schmidt-Grund, E.M. Kaidashev, M. Grundmann, Ann. Phys.(Leipzig) 13, 59 (2004)ADSGoogle Scholar
  94. 95.
    R. Schmidt-Grund, T. Nobis, V. Gottschalch, B. Rheinländer, H. Herrnberger, M. Grundmann, Thin Solid Films 483, 257 (2005)ADSGoogle Scholar
  95. 96.
    R. Schmidt-Grund, T. Gühne, H. Hochmuth, B. Rheinländer, A. Rahm, V. Gottschalch, J. Lenzner, M. Grundmann, SPIE 6038, 489 (2006)ADSGoogle Scholar
  96. 97.
    H. von Wenckstern, G. Biehne, R. Abdel Rahman, H. Hochmuth, M. Lorenz, M. Grundmann, Appl. Phys. Lett. 88, 092102 (2006)ADSGoogle Scholar
  97. 98.
    C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, A. Waag, Phys. J. 5, 33 (2006)Google Scholar
  98. 99.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 2 (2005)ADSGoogle Scholar
  99. 100.
    Y.-W. Heo, S.J. Park, K. Ip, S.J. Pearton, D.P. Norton, Appl. Phys. Lett. 83, 1128 (2003)ADSGoogle Scholar
  100. 101.
    Y.R. Ryu, T.S. Lee, H.W. White, Appl. Phys. Lett. 83, 87 (2003)ADSGoogle Scholar
  101. 102.
    X.-L Guo, J.-H. Choi, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. 40, L177 (2001)ADSGoogle Scholar
  102. 103.
    H. Ohta, M. Hirano, K. Nakahara, K. Nakahara, H. Maruta, T. Tanabe, M. Kamiya, T. Kamiya, H. Hosono, Appl. Phys. Lett. 83, 1029 (2003)ADSGoogle Scholar
  103. 104.
    S.Y. Lee, E.S. Shim, H.S. Kang, S.S. Pang, J.S. Kang, Thin Solid Films 473, 31 (2005)ADSGoogle Scholar
  104. 105.
    T. Makino, K. Tamura, C.H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Appl. Phys. Lett. 81, 2172 (2002)ADSGoogle Scholar
  105. 106.
    A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 88, 152106 (2006)ADSGoogle Scholar
  106. 107.
    R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J.B. Halpern, M.G. Spencer, Y.X. Li, L.G. Salamanca-Riba, A.A. Iliadis, K.A. Jones, Appl. Phys. Lett. 73, 348 (1998)ADSGoogle Scholar
  107. 108.
    E. Bellingeri, D. Marre, I. Pallecchi, L. Pellegrino, A.S. Siri, Appl. Phys. Lett. 86,012109 (2005)ADSGoogle Scholar
  108. 109.
    E. Bellingeri, D. Marre, I. Pallecchi, L. Pellegrino, G. Canu, A.S. Siri, Thin Solid Films 486, 186 (2005)ADSGoogle Scholar
  109. 110.
    M. Karger, M. Schilling, Phys. Rev. B 71, 075304 (2005)ADSGoogle Scholar
  110. 111.
    E. Vasco, C. Zaldo, L. Vazquez, J. Phys.: Condens. Mat. 13, L663 (2001)ADSGoogle Scholar
  111. 112.
    S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Appl. Phys. Lett. 75, 3947 (1999)ADSGoogle Scholar
  112. 113.
    X.W. Sun, H.S. Kwok, J. Appl. Phys. 86, 408 (1999)ADSGoogle Scholar
  113. 114.
    A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Segawa, H. Koinuma, M. Kawasaki, J. Cryst. Growth 214-215, 284 (2000)ADSGoogle Scholar
  114. 115.
    J.F. Muth, R.M. Kolbas, A.K. Sharma, J. Appl. Phys. 85, 7884 (1999)ADSGoogle Scholar
  115. 116.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 81, 6357 (1997)ADSGoogle Scholar
  116. 117.
    H. Matsui, H. Saeki, T. Kawai, A. Sasaki, M. Yoshimoto, M. Tsubaki, H. Tabata, J. Vac. Sci. Technol. B 22, 2454 (2004)Google Scholar
  117. 118.
    S. Choopun, R.D. Vispute, W. Yang, R.P. Sharma, T. Venkatesan, Appl. Phys. Lett. 80, 1529 (2002)ADSGoogle Scholar
  118. 119.
    R.D. Vispute, S.S. Hullavarad, D.E. Pugel, V.N. Kulkarni, S. Dhar, I. Takeuchi, T. Venkatesan, Wide band gap ZnO and MgZnO heterostructures for future optoelectronic devices. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, Berlin Heidelberg New York 2005) pp 301-330Google Scholar
  119. 120.
    M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93,177206 (2004)Google Scholar
  120. 121.
    A.K. Pradhan, K. Zhang, S. Mohanty, J.B. Dadson, D. Hunter, J. Zhang, D.J. Sellmyer, U.N. Roy, Y. Cui, A. Burger, S. Mathews, B. Joseph, B.R. Sekhar, B.K. Roul, Appl. Phys. Lett. 86, 152511 (2005)Google Scholar
  121. 122.
    D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nat. Mater. 3, 709 (2004)ADSGoogle Scholar
  122. 123.
    S.J. Pearton, W.H. Heo, M. Ivill, D.P. Norton, T. Steiner, Semicond. Sci. Technol. 19, R59 (2004)ADSGoogle Scholar
  123. 124.
    J. Perriere, E. Millon, W. Seiler, C. Boulmer-Leborgne, V. Cracium, O. Albert, J.C. Loulergue, J. Etchepare, J. Appl. Phys. 91, 690 (2002)ADSGoogle Scholar
  124. 125.
    M. Okoshi, K. Higashikawa, M. Hanabusa, Jpn. J. Appl. Phys. 40, 1287 (2001)ADSGoogle Scholar
  125. 126.
    H.M. Christen, S.D. Silliman, K.S. Harshavardhan, Rev. Sci. Instrum. 72, 2673 (2001); & ORNL-CMSD progress report ORNL-6969, 76 (2002)Google Scholar
  126. 127.
    X. Zhu, H.L.-W. Chan, C.-L. Choy, K.H. Wong, D. Hesse, J. Appl. Phys. 97, 093503 (2005)ADSGoogle Scholar
  127. 128.
    T. Venkatesan, K.S. Harshavardhan, M. Strikovski, J. Kim, Recent advances in the deposition of multi-component oxide films by pulsed energy deposition. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, Berlin Heidelberg New York 2005) pp 385-413Google Scholar
  128. 129.
    I. Takeuchi, Combinatorial synthesis of functional materials. In: Thin Films and Heterostructures for Oxide Electronics, ed. by S.B. Ogale (Springer, Berlin Heidelberg New York 2005) pp 333-352Google Scholar
  129. 130.
    Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Mukarami, Y. Matsumoto, T. Hasegawa, H. Koinuma, Appl. Phys. Lett. 78,3824 (2001)ADSGoogle Scholar
  130. 131.
    Z.W. Jin, Y.Z. Yoo, T. Sekiguchi, T. Chikyow, H. Ofuchi, H. Fujioka, M. Oshima, H. Koinuma, Appl. Phys. Lett. 83, 39 (2003)ADSGoogle Scholar
  131. 132.
    A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, Science 315,1388 (2007) & K. Ueda, H. Tabata, T. Kawai, Science 280, 1064 (1998)Google Scholar
  132. 133.
    M. Siegert, W. Zander, J. Lisoni, J. Schubert, C. Buchal, Appl. Phys. A 69, S 779 (1999)ADSGoogle Scholar
  133. 134.
    P. Mukherjee, S. Chen, J.B. Cuff, P. Sakthivel, S. Witanachchi, J. Appl. Phys. 91,1828 (2002)ADSGoogle Scholar
  134. 135.
    M. Strikovski, K.S. Harshavardhan, Appl. Phys. Lett. 82, 853 (2003)ADSGoogle Scholar
  135. 136.
    A.M. Morales, C.M. Lieber, Science 279, 208 (1998)ADSGoogle Scholar
  136. 137.
    Y.H. Tang, Y.F. Zhang, N. Wang, I. Bello, C.S. Lee, S.T. Lee, J. Appl. Phys. 85,7981 (1999)ADSGoogle Scholar
  137. 138.
    M. Kawakami, A.B. Hartando, Y. Nakata, T. Okada, Jpn. J. Appl. Phys. 42, L33 (2003)ADSGoogle Scholar
  138. 139.
    M. Yan, H.T. Zhang, E.J. Widjaja, R.P.H. Chang, J. Appl. Phys. 94, 5240 (2003)ADSGoogle Scholar
  139. 140.
    M. Lorenz, E.M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)ADSGoogle Scholar
  140. 141.
    A. Rahm, M. Lorenz, T. Nobis, G. Zimmermann, M. Grundmann, B. Fuhrmann, F. Syrowatka, Appl. Phys. A 88, 31 (2007)ADSGoogle Scholar
  141. 142.
    A. Rahm, T. Nobis, M. Lorenz, G. Zimmermann, N. Boukos, A. Travlos, M. Grundmann, Adv. Solid State Phys. 46, in press (2007)Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • M. Lorenz
    • 1
  1. 1.Institut für Experimentelle Physik IIUniversität LeipzigLeipzigGermany

Personalised recommendations