Nanotribological Characterization of Carbonaceous Materials: Study of Diamond Coatings and Graphite

  • M. Schmitt
  • S. Bistac
Part of the NanoScience and Technology book series (NANO)


Because of the development of nanotechnologies, it becomes essential to fully understand the properties of the materials used in these specific conditions, more particularly those of carbonaceous films. The mechanisms involved in the nanofriction of these coatings must be thoroughly studied; atomic force microscopy (AFM) seems to be a suitable technique to achieve this objective.

In this work, an inventory is first drawn up concerning the role of both experimental and intrinsic properties on the nanotribological behaviour of various carbonaceous films. Then results obtained with AFM in contact mode on diamond coatings and graphite powders are presented: the effects of the scanning velocity, contact load and superficial chemistry on friction are more particularly studied.


Diamond Graphite Superficial chemistry Nanofriction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhushan B (2005) Wear 259:1507CrossRefGoogle Scholar
  2. 2.
    Andersson J, Erck R, Erdemir A (2003) Surf Coat Technol 163–164:535CrossRefGoogle Scholar
  3. 3.
    Erdemir A (2004) Tribol Int 37:577CrossRefGoogle Scholar
  4. 4.
    Ronkainen H, Varjus S, Koskinen J, Holmberg K (2001) Wear 249:260CrossRefGoogle Scholar
  5. 5.
    Kennedy F, Lidhagen D, Erdemir A, Woodford J, Kato T (2003) Wear 255:854CrossRefGoogle Scholar
  6. 6.
    Koskinen J, Ronkainen H, Varjus S, Muukkonen T, Holmberg K, Sajavaara T (2001) Diamond Relat Mater 10:1030CrossRefGoogle Scholar
  7. 7.
    Erdemir A (2004) Tribol Int 37:1005CrossRefGoogle Scholar
  8. 8.
    Homola A, Israelachvili J, McGuiggan P, Gee M (1990) Wear 136:65CrossRefGoogle Scholar
  9. 9.
    Schwarz U, Zwörner O, Köster P, Wiesendanger R (1997) Phys Rev B 56:6987CrossRefGoogle Scholar
  10. 10.
    Germann G, Cohen S, Neubauer G, Mc Cleeland G, Seki H, Coulman D (1993) J Appl Phys 73:163CrossRefGoogle Scholar
  11. 11.
    Santos L, Trava-Airoldi V, Iha K, Corat E, Salvadori M (2001) Diamond Relat Mater 10:1049CrossRefGoogle Scholar
  12. 12.
    Tambe N, Bhushan B (2005) Scripta Mater 52:751CrossRefGoogle Scholar
  13. 13.
    Bhushan B, Koinkar V (1995) Surf Coat Technol 76–77:655Google Scholar
  14. 14.
    Gupta B, Bhushan B (1995) Thin Solid Films 270:391CrossRefGoogle Scholar
  15. 15.
    Li X, Bhushan B (1999) J Mater Res 14:2328CrossRefGoogle Scholar
  16. 16.
    Sundararajan S, Bhushan B (1999) Wear 225–229:678CrossRefGoogle Scholar
  17. 17.
    Liu E, Blanpain B, Celis JP, Roos J (1998) J Appl Phys 84:4859CrossRefGoogle Scholar
  18. 18.
    Ruan J, Bhushan B (1993) J Mater Lett 8:3019Google Scholar
  19. 19.
    Shinjo K, Hirano M (1993) Surf Sci 283:473CrossRefGoogle Scholar
  20. 20.
    Dienwiebel M, Verhoeven G, Pradeep N, Frenken J, Heimberg J, Zandbergen H (2004) Phys Rev Lett 92:126101CrossRefGoogle Scholar
  21. 21.
    Dienwiebel M, Pradeep N, Verhoeven G, Zandbergen H, Frenken J (2005) Surf Sci 576:197CrossRefGoogle Scholar
  22. 22.
    Mate C (1993) Wear 168:17CrossRefGoogle Scholar
  23. 23.
    Bowden F, Tabor D (1950) The friction and lubrication of solids. Oxford University Press, OxfordGoogle Scholar
  24. 24.
    Skinner J, Gane N, Tabor D (1974) Nat Phys Sci 232:195Google Scholar
  25. 25.
    Mate C, McClelland G, Erlandsson R, Chiang S (1987) Phys Rev Lett 19:1942CrossRefGoogle Scholar
  26. 26.
    Miyamoto T, Kaneko R, Andoh Y (1991) Adv Inf Storage Syst 3:137Google Scholar
  27. 27.
    Tabor D (1974) The properties of diamond. Academic Press, LondonGoogle Scholar
  28. 28.
    Samuels B, Wilks J (1988) J Mater Res 23:2846Google Scholar
  29. 29.
    Wang M, Miyake S, Saito T (2005) Tribol Int 38:657CrossRefGoogle Scholar
  30. 30.
    Riedo E, Chevrier J, Comin F, Brune H (2001) Surf Sci 477:25CrossRefGoogle Scholar
  31. 31.
    Ma X, Komvopoulos K, Wan D, Bogy D, Kim Y (2003) Wear 254:1010CrossRefGoogle Scholar
  32. 32.
    Buzio R, Gnecco E, Boragno C, Valbusa U (2002) Carbon 40:883CrossRefGoogle Scholar
  33. 33.
    Grierson D, Carpick R (2007) Nanotoday 2:12Google Scholar
  34. 34.
    Prioli R, Chhowalla, Freire F (2003) Diamond Relat Mater 12:2195CrossRefGoogle Scholar
  35. 35.
    Riedo E, Levy F, Brune H (2002) Phys Rev Lett 88:3793CrossRefGoogle Scholar
  36. 36.
    Matsumoto N, Joly-Pottuz L, Kinoshita H, Ohmae N (2007) Diamond Relat Mater 16:1227CrossRefGoogle Scholar
  37. 37.
    Ohmae N (2006) Tribol Int 39:1497CrossRefGoogle Scholar
  38. 38.
    Binggeli M, Mate C (1994) Appl Phys Lett 65:415CrossRefGoogle Scholar
  39. 39.
    Carpick R, Flater E, Sridharan K (2004) Polym Mater Sci Eng 90:197Google Scholar
  40. 40.
    Enachescu M, Van den Oetelaar R, Carpick R, Ogletree D, Flipse C, Salmeron M (1999) Tribol Lett 7:73CrossRefGoogle Scholar
  41. 41.
    Buzio R, Boragno C, Valbusa U (2003) Wear 254:981CrossRefGoogle Scholar
  42. 42.
    Carpick R, Flater E, Ogletree D, Salmeron M (2004) J Occup Med 56:48Google Scholar
  43. 43.
    Enachescu M, Van den Oetelaar R, Carpick R, Ogletree D, Flipse C, Salmeron M (1998) Phys Rev Lett 81:1877CrossRefGoogle Scholar
  44. 44.
    Gao G, Cannara R, Carpick R, Harrisson J (2007) Langmuir 23:5394CrossRefGoogle Scholar
  45. 45.
    Kinoshita H, Kume I, Tagawa M, Ohmae N (2004) Appl Phys Lett 85:2780CrossRefGoogle Scholar
  46. 46.
    Davis C, Amaratunga G, Knowles K (1998) Phys Rev Lett 80:3280CrossRefGoogle Scholar
  47. 47.
    Charitidis C, Logothetidis S (2005) Diamond Relat Mater 14:98CrossRefGoogle Scholar
  48. 48.
    Ahn H, Cuong P, Park S, Kim Y, Lim J (2003) Wear 255:819CrossRefGoogle Scholar
  49. 49.
    Jiang Z, Lu C, Bogy D, Bhatia C, Miyamoto T (1995) Thin Solid Films 258:75CrossRefGoogle Scholar
  50. 50.
    Fang T, Weng C, Chang J, Hwang C (2001) Thin Solid Films 396:167CrossRefGoogle Scholar
  51. 51.
    Prioli R, Jacobsohn L, Maia da Costa M, Freire F (2003) Tribol Lett 15:177CrossRefGoogle Scholar
  52. 52.
    Van den Oetelaar, Flipse C (1997) Surf Sci 384:L828CrossRefGoogle Scholar
  53. 53.
    Hirose Y, Kondoh N (1988) in Extended abstract of 35th Spring meeting of the Japanese Society of Applied Physics. Tokyo, p 343Google Scholar
  54. 54.
    Paulmier D, Schmitt M, Mermoux M (2001) in Proceedings of the Sixth Applied Diamond Conference (ADC/FCT 2001); NASA/CP-2001-210948, Auburn, p 293Google Scholar
  55. 55.
    Allara D, Patrikh A, Rondelez F (1995) Langmuir 11:2357CrossRefGoogle Scholar
  56. 56.
    Boumaza S, Schmitt M, Bistac S, Jradi K (2007) Master thesis, Université de Haute-Alsace, France: “Etude du frottement du couple pion de graphite/pointe AFM à l’échelle nanoscopique par AFM”Google Scholar
  57. 57.
    Enomoto Y, Tabor D (1981) Proceedings of the Royal Society A 373:405Google Scholar
  58. 58.
    Casey M, Wilks J (1973) J Phys D6:1772Google Scholar
  59. 59.
    Samuels B, Wilks J (1988) J Mater Sci 20:213Google Scholar
  60. 60.
    Schmitt M, Bistac S, Jradi K (2007) J Phys Conf Ser 61:1032CrossRefGoogle Scholar
  61. 61.
    Jradi K (2007) Ph.D. thesis, Université de Haute-Alsace, France: “Etude du comportement tribologique de poudres de graphite: transfert aux échelles nano et macroscopiques”Google Scholar
  62. 62.
    Riedo E, Chevrier J, Comin F, Brune H (2001) Surf Sci 477:25CrossRefGoogle Scholar
  63. 63.
    Charitidis C, Logothetidis S, Gioti M (2000) Surf Coat Technol 125:201CrossRefGoogle Scholar
  64. 64.
    Huang L, Xu K, Lu J, Guelorget B (2002) Surf Coat Technol 154:232CrossRefGoogle Scholar
  65. 65.
    Jradi K, Boumaza S, Schmitt M, Bistac S (2008) Influence de la chimie de surface sur le comportement tribologique des couples graphites/silicium, accepted in Presses Romandes UniversitairesGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Schmitt
  • S. Bistac

There are no affiliations available

Personalised recommendations