Algorithms in Symbolic Computation

  • Peter Paule
  • Bruno Buchberger
  • Lena Kartashova
  • Manuel Kauers
  • Carsten Schneider
  • Franz Winkler


The development of computer technology has brought forth a renaissance of algorithmic mathematics which gave rise to the creation of new disciplines like Computational Mathematics. Symbolic Computation, which constitutes one of its major branches, is the main research focus of the Research Institute for Symbolic Computation (RISC). In Section 1, author P. Paule, one finds an introduction to the theme together with comments on history as well as on the use of the computer for mathematical discovery and proving. The remaining sections of the chapter present more detailed descriptions of hot research topics currently pursued at RISC. In Section 2 the inventor of Gröbner Bases, B. Buchberger, describes basic notions and results, and underlines the principal relevance of Gröbner bases by surprising recent applications. Section 3, author F. Winkler, gives an introduction to algebraic curves; a summary of results in theory and applications (e.g., computer aided design) is given. Section 4, author M. Kauers, reports on computer generated progress in lattice paths theory finding applications in combinatorics and physics. Section 5, author C. Schneider, provides a description of an interdisciplinary research project with DESY (Deutsches Elektronen-Synchrotron, Berlin/Zeuthen). Section 6, author E. Kartashova, describes the development of Nonlinear Resonance Analysis, a new branch of mathematical physics.


Computer Algebra Symbolic Computation Lattice Path Dispersion Function Nonlinear Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAR00]
    G.E. Andrews, R. Askey, and R. Roy. Special Functions. Number 71 in Encyclopedia of Mathematics and its applications. Cambridge UP, 2000.Google Scholar
  2. [AJLT05]
    F. Almonte, V.K. Jirsa, E.W. Large, and B. Tuller. Integration and segregation in auditory streaming. Physica D, 212:137–159, 2005.CrossRefMathSciNetGoogle Scholar
  3. [AP94]
    S.A. Abramov and M. Petkovšek. D’Alembertian solutions of linear differential and difference equations. In J. von zur Gathen, editor, Proc. ISSAC’94, pages 169–174. ACM Press, 1994.Google Scholar
  4. [Arn83]
    V.I. Arnold. Geometrical methods in the theory of ordinary differential equations. A Series of Comprehensive Studies in Mathematics. New York Heidelberg Berlin: Springer-Verlag, 1983.zbMATHGoogle Scholar
  5. [AS64]
    M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions. United States Government Printing Office, 1964. Reprinted by Dover, 1965.Google Scholar
  6. [BBK06]
    I. Bierenbaum, J. Blümlein, and S. Klein. Evaluating two-loop massive operator matrix elements with Mellin-Barnes integrals. Nucl. Phys. B (Proc. Suppl.), 160:85–90, 2006. Proceedings of the 8th DESY Workshop on Elementary Particle Theory.Google Scholar
  7. [BBK07]
    I. Bierenbaum, J. Blümlein, and S. Klein. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q 2m 2. Nucl. Phys. B, 780:40–75, 2007. [arXiv:hep-ph/0703285].zbMATHCrossRefGoogle Scholar
  8. [BBKS07]
    I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider. Difference equations in massive higher order calculations. In Proc. ACAT 2007, volume PoS(ACAT)082, 2007. [arXiv:hep-ph/0707.4659].Google Scholar
  9. [BBKS08]
    I. Bierenbaum, J. Blümlein, S. Klein, and C. Schneider. Two–loop massive operator matrix elements for unpolarized heavy flavor production to o(ǫ). Nucl.Phys. B, 803(1-2):1–41, 2008. [arXiv:hep-ph/0803.0273].Google Scholar
  10. [BK99]
    J. Blümlein and S. Kurth. Harmonic sums and Mellin transforms up to twoloop order. Phys. Rev., D60, 1999.Google Scholar
  11. [BK08]
    Alin Bostan and Manuel Kauers. Automatic classification of restricted lattice walks. arXiv:0811.2899, 2008.Google Scholar
  12. [BK09a]
    Alin Bostan and Manuel Kauers. The full counting function for Gessel walks is algebraic, 2009. (in preparation).Google Scholar
  13. [BK09b]
    M.D. Bustamante and E. Kartashova. Dynamics of nonlinear resonances in Hamiltonian systems. Europhysics Letters, 85:14004–6, 2009.CrossRefGoogle Scholar
  14. [BK09c]
    M.D. Bustamante and E. Kartashova. Effect of the dynamical phases on the nonlinear amplitudes’ evolution. Europhysics Letters, 85:34002–5, 2009.CrossRefGoogle Scholar
  15. [BKKS09a]
    J. Blümlein, M. Kauers, S. Klein, and C. Schneider. Determining the closed forms of the O(a 3 s) anomalous dimensions and wilson coefficients from Mellin moments by means of computer algebra. Technical Report DESY 09-002, SFB/CPP-09-22, Deutsches Elektronen Syncrothron, Zeuthen, 2009. [arXiv:hep-ph/0902.4091].Google Scholar
  16. [BKKS09b]
    J. Blümlein, M. Kauers, S. Klein, and C. Schneider. From moments to functions in quantum chromodynamics. In To appear in Proc. ACAT 2008, volume PoS(ACAT08)106, 2009. [arXiv:hep-ph/0902.4095].Google Scholar
  17. [BM02]
    Mireille Bousquet-Melou. Counting walks in the quarter plane. In Trends Math., pages 49–67. Birkhäuser, 2002.Google Scholar
  18. [BMM08]
    Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the quarter plane. ArXiv 0810.4387, 2008.Google Scholar
  19. [Buc65]
    B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis, University Innsbruck, Mathematical Institute, 1965. German, English translation in: J. of Symbolic Computation, Special Issue on Logic, Mathematics, and Computer Science: Interactions. Volume 41, Number 3–4, Pages 475–511, 2006.Google Scholar
  20. [Buc70]
    B. Buchberger. An Algorithmical Criterion for the Solvability of Algebraic Systems of Equations. Aequationes mathematicae, 4(3):374–383, 1970. German. English translation in: B. Buchberger, F. Winkler (eds.), Groebner Bases and Applications, London Mathematical Society Lecture Note Series, Vol. 251, Cambridge University Press, 1998, pp. 535–545.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Buc98]
    B. Buchberger. Introduction to Groebner Bases. In B. Buchberger and F. Winkler, editors, Groebner Bases and Applications, number 251 in London Mathematical Society Lecture Notes Series, pages 3–31. Cambridge University Press, 1998.Google Scholar
  22. [BW93]
    T. Becker and V. Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York, 1993.zbMATHGoogle Scholar
  23. [BW98]
    Bruno Buchberger and Franz Winkler, editors. Gröbner Bases and Applications. Proc. of the International Conference “33 Years of Groebner Bases”, volume 251 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1998. 560 pages.Google Scholar
  24. [CGP99]
    F. Chyzak, I. Gutman, and P. Paule. Predicting the Number of Hexagonal Systems with 24 and 25 Hexagons. MATCH, 40:139–151, 1999.Google Scholar
  25. [Che93]
    M. Cheney. Tesla Man Out Of Time. Barnes & Noble, 1993.Google Scholar
  26. [CP07]
    J. Chifman and S. Petrovic. Toric Ideals of Phylogenetic Invariants for the General Group-based Model on Claw Trees K1,n. In H. Anai, K. Horimoto, and T. Kutsia, editors, Algebraic Biology, Proc. of the Second International Conference on Algebraic Biology, volume 4545 of Lecture Notes in Computer Science, pages 307–321, RISC, Hagenberg, Austria, July 2007. Springer.Google Scholar
  27. [CPS+01]
    F. Chyzak, P. Paule, O. Scherzer, A. Schoisswohl, and B. Zimmermann. The Construction of Orthonormal Wavelets using Symbolic Methods and a Matrix Analytical Approach for Wavelets on the Interval. Experiment. Math., 10:67– 86, 2001.zbMATHMathSciNetGoogle Scholar
  28. [DH81]
    P.J. Davis and R. Hersh. The Mathematical Experience. Birkhaeuser, Boston, 1981.Google Scholar
  29. [dS04]
    Y. du Sautoy. The Music of the Primes. Fourth Estate, London, 2004.zbMATHGoogle Scholar
  30. [Due08]
    G. Dueck. Mathematik und Weltläufigkeit. Mitteilungen der DMV, 16:206– 209, 2008.Google Scholar
  31. [Eys66]
    Hans J. Eysenck. Check Your Own I.Q. Rowohlt, 1966.Google Scholar
  32. [FG04]
    R. Feng and X.-S. Gao. Rational General Solutions of Algebraic Ordinary Differential Equations. In J. Gutierrez, editor, Proc. ISSAC 2004 (Internat. Symp. on Symbolic and Algebraic Computation), pages 155–162. ACM Press, New York, 2004.Google Scholar
  33. [FG06]
    R. Feng and X.-S Gao. A Polynomial Time Algorithm to Find Rational General Solutions for First Order Autonomous ODEs. J. Symbolic Computation, 41:735–762, 2006.CrossRefMathSciNetGoogle Scholar
  34. [FJ03]
    J.C. Faugere and A. Joux. Algebraic Cryptoanalysis of Hidden Field Equation (HFE) Cryptosystems Using Groebner Bases. In D. Boneh, editor, CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 44–60, 2003.Google Scholar
  35. [GCL92]
    K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra. Kluwer, 1992.Google Scholar
  36. [GK05]
    S. Gerhold and M. Kauers. A Procedure for Proving Special Function Inequalities Involving a Discrete Parameter. In Proceedings of ISSAC’05, pages 156–162. ACM Press, 2005.Google Scholar
  37. [GKLR04]
    M. Ghil, D. Kondrashov, F. Lott, and A.W. Robertson. Intraseasonal oscillations in the mid-latitudes: observations, theory, and GCM results. Proc. ECMWF/CLIVAR Workshop on Simulations and prediction of Intra-Seasonal Variability with Emphasis on the MJO. November 3-6, 2003., pages 35–53, 2004.Google Scholar
  38. [GKP94]
    R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 2nd edition edition, 1994.Google Scholar
  39. [Har40]
    G.H. Hardy. A Mathematician’s Apology. Cambridge University Press, 1940.Google Scholar
  40. [HKPP06]
    D. Heldt, M. Kreuzer, S. Pokutta, and H. Poulisse. Algebraische Modellierung mit Methoden der approximativen Computeralgebra und Anwendungen in der ¨Olindustrie. OR-News, 28, 2006. issn 1437-2045.Google Scholar
  41. [HMK03]
    K. Horvat, M. Miskovic, and O. Kuljaca. Avoidance of nonlinear resonance jump in turbine governor positioning system using fuzzy controller. Industrial Technology, 2:881–886, 2003.Google Scholar
  42. [ITBR04]
    T. Ida, D. Tepeneu, B. Buchberger, and J. Robu. Proving and Constraint Solving in Computational Origami. In B. Buchberger and John Campbell, editors, Proceedings of AISC 2004 (7 th International Conference on Artificial Intelligence and Symbolic Computation), volume 3249 of Springer Lecture Notes in Artificial Intelligence, pages 132–142. Copyright: Springer-Berlin, 22-24 September 2004.Google Scholar
  43. [Kar81]
    M. Karr. Summation in finite terms. J. ACM, 28:305–350, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [Kar94]
    Elena Kartashova. Weakly nonlinear theory in resonators. Physical Review Letters, 72:2013–2016, 1994.CrossRefGoogle Scholar
  45. [Kar98]
    Elena Kartashova. Wave resonances in systems with discrete spectra. In V.E. Zakharov, editor, Nonlinear Waves and Weak Turbulence, volume 182 of AMS Translations 2, pages 95–130. American Mathematical Society, 1998.Google Scholar
  46. [Kar06]
    E. Kartashova. Fast Computation Algorithm for Discrete Resonances among Gravity Waves. JLTP (Journal of Low Temperature Physics), 145(1):287–295, 2006.CrossRefGoogle Scholar
  47. [Kau08]
    Manuel Kauers. Computer Algebra for Special Function Inequalities. In Tewodros Amdeberhan and Victor Moll, editors, Tapas in Experimental Mathematics, volume 457 of Contemporary Mathematics, pages 215–235. AMS, 2008.Google Scholar
  48. [KB05]
    M. Kundu and D. Bauer. Nonlinear Resonance Absorption in the Laser-Cluster Interaction. Physical Review Letters, 96:123401, 2005.CrossRefGoogle Scholar
  49. [KK06]
    E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algorithms I. IJMPC (International Journal of Modern Physics C), 17(11):1579– 1596, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [KK07]
    E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algorithms III. Physica A: Statistical Mechanics and Its Applications, 380:66–74, 2007.CrossRefGoogle Scholar
  51. [KKZ08]
    Manuel Kauers, Christoph Koutschan, and Doron Zeilberger. Proof of Ira Gessel’s lattice path conjecture. Technical Report 2008-08, SFB F013, Johannes Kepler Universität, 2008. (submitted).Google Scholar
  52. [KL07]
    E. Kartashova and V. L’vov. A model of intra-seasonal oscillations in the Earth atmosphere. Physical Review Letters, 98(19):198501, May 2007.CrossRefGoogle Scholar
  53. [KL08]
    E. Kartashova and V. L’vov. Cluster Dynamics of Planetary Waves. Europhys. Letters, 83:50012–1–50012–6, 2008.CrossRefGoogle Scholar
  54. [KLPG04]
    A.L. Karuzskii, A.N. Lykov, A.V. Perestoronin, and A.I. Golovashkin. Microwave nonlinear resonance incorporating the helium heating effect in superconducting microstrip resonators. Physica C: Superconductivity, 408-410:739– 740, 2004.CrossRefGoogle Scholar
  55. [Klu06]
    W. Kluzniak. Quasi periodic oscillations and the possibility of an abservational distinction between neutron and quark stars. Acta Physica Polonica B, 37:1361–1366, 2006.Google Scholar
  56. [KM06]
    D.A. Kovriguine and G.A. Maugin. Multiwave nonlinear couplings in elastic structures. Mathematical Problems in Engineering, 2006:76041, 2006.CrossRefMathSciNetGoogle Scholar
  57. [KM07]
    E. Kartashova and G. Mayrhofer. Cluster formation in mesoscopic systems. Physica A: Statistical Mechanics and Its Applications, 385:527–542, 2007.CrossRefGoogle Scholar
  58. [KP07]
    Manuel Kauers and Peter Paule. A Computer Proof of Moll’s Log-Concavity Conjecture. Proceedings of the AMS, 135(12):3847–3856, December 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  59. [KR00]
    M. Kreuzer and L. Robbiano. Computational Commutative Algebra I. Springer New York–Heidelberg, 2000.zbMATHGoogle Scholar
  60. [KRF+07]
    E. Kartashova, C. Raab, Ch. Feurer, G. Mayrhofer, and W. Schreiner. Symbolic Computations for Nonlinear Wave Resonances. In Ch. Harif and E. Pelinovsky, editors, “Extreme Ocean Waves”. Springer, 2007. (submitted).Google Scholar
  61. [Kuk04]
    B. Kuksin. Fifteen years of KAM for PDE. In AMS Translations 2, volume 212, pages 237–258. American Mathematical Society, 2004.Google Scholar
  62. [KZ08]
    Manuel Kauers and Doron Zeilberger. The quasi-holonomic ansatz and restricted lattice walks. Journal of Difference Equations and Applications, 14(10):1119–1126, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  63. [LH04]
    P. Lynch and C. Houghton. Pulsation and precession of the resonant swinging spring. Physica D, 190:38–62, 2004.zbMATHCrossRefMathSciNetGoogle Scholar
  64. [LHG67]
    M.S. Longuet-Higgins and A.E. Gill. Resonant Interactions between Planetary Waves. Proc. R. Soc. London, Ser. A, 299:120–140, 1967.CrossRefGoogle Scholar
  65. [M06]
    Kauers M. Sum Cracker – A Package for Manipulating Symbolic Sums and Related Objects. J. Symbolic Computat., 41(9):1039–1057, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  66. [Mal96]
    Christian Mallinger. Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences. Master’s thesis, RISC-Linz, August 1996.Google Scholar
  67. [Mis07]
    Marni Mishna. Classifying lattice walks restricted to the quarter plane. In Proceedings of FPSAC’07, 2007.Google Scholar
  68. [MS07]
    S. Moch and C. Schneider. Feynman integrals and difference equations. In Proc. ACAT 2007, volume PoS(ACAT)083, 2007. [arXiv:hep-ph/0709.1769].Google Scholar
  69. [MVV04]
    S. Moch, J. A. M. Vermaseren, and A. Vogt. The three-loop splitting functions in qcd: The non-singlet case. Nucl. Phys. B, 688:101–134, 2004. [arXiv:hepph/0403192].zbMATHCrossRefMathSciNetGoogle Scholar
  70. [Ped87]
    J. Pedlosky. Geophysical Fluid Dynamics. New York Heidelberg Berlin: Springer-Verlag, 1987.Google Scholar
  71. [Pil07]
    V. Pillwein. Positivity of Certain Sums over Jacobi Kernel Polynomials. Advances Appl. Math., 41:365–377, 2007.CrossRefMathSciNetGoogle Scholar
  72. [PP08]
    P. Paule and V. Pillwein. Automatic Improvements of Wallis’ Inequality. Technical Report 08–18, RISC Report Series, University of Linz, Austria, 2008.Google Scholar
  73. [PR97]
    P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger’s algorithm based on an algebraically motivated aproach to q-hypergeometric telescoping. In M. Ismail and M. Rahman, editors, Special Functions, q-Series and Related Topics, volume 14, pages 179–210. Fields Institute Toronto, AMS, 1997.Google Scholar
  74. [PS95]
    P. Paule and M. Schorn. A Mathematica version of Zeilberger’s Algorithm for Proving Binomial Coefficient Identities. J. Symbolic Comput., 20(5-6):673–698, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  75. [PS03]
    P. Paule and C. Schneider. Computer proofs of a new family of harmonic number identities. Adv. in Appl. Math., 31(2):359–378, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  76. [PV00]
    D. Poulakis and E. Voskos. On the Practical Solutions of Genus Zero Diopantine Equations. J. Symbolic Computation, 30:573–582, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  77. [PV02]
    D. Poulakis and E. Voskos. Solving Genus Zero Diopantine Equations with at Most Two Infinity Valuations. J. Symbolic Computation, 33:479–491, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  78. [PWZ96]
    M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley, MA, 1996.Google Scholar
  79. [RBE03]
    M. Rosenkranz, B. Buchberger, and H. W. Engl. Solving Linear Boundary Value Problems Via Non-commutative Groebner Bases. Applicable Analysis, 82(7):655–675, July 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  80. [Sch04]
    C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365– 386, 2004.zbMATHMathSciNetGoogle Scholar
  81. [Sch05]
    C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799– 821, 2005.zbMATHCrossRefGoogle Scholar
  82. [Sch07]
    C. Schneider. Symbolic summation assists combinatorics. Sém. Lothar. Combin., 56:1–36, 2007. Article B56b.Google Scholar
  83. [Sch08]
    C. Schneider. A refined difference field theory for symbolic summation. J. Symbolic Comput., 43(9):611–644, 2008. [arXiv:0808.2543v1].zbMATHCrossRefMathSciNetGoogle Scholar
  84. [Sch09]
    C. Schneider. A symbolic summation approach to find optimal nested sum representations. In Proceedings of the Conference on Motives, Quantum Field Theory, and Pseudodifferential Operators, To appear in the Mathematics Clay Proceedings, 2009.Google Scholar
  85. [Slo73]
    N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.Google Scholar
  86. [Slo94]
    N.J.A. Sloane. The New Book of Integer Sequences. Springer, 1994.Google Scholar
  87. [SWPD08]
    J.R. Sendra, F. Winkler, and S. Pérez-Díaz. Rational Algebraic Curves — A Computer Algebra Approach, volume 22 of Algorithms and Computation in Mathematics. Springer-Verlag Heidelberg, 2008.zbMATHGoogle Scholar
  88. [SZ94]
    B. Salvy and P. Zimmermann. Gfun: A Package for the Manipulation of Generating and Holonomic Functions in One Variable. ACM Trans. Math. Software, 20:163–177, 1994.zbMATHCrossRefGoogle Scholar
  89. [Ver99]
    J.A.M. Vermaseren. Harmonic sums, Mellin transforms and integrals. Int. J. Mod. Phys. A, 14:2037–2076, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  90. [VGJ02]
    Markus Voege, Anthony J. Guttmann, and Iwan Jensen. On the Number of Benzenoid Hydrocarbons. Journal of Chemical Information and Computer Sciences, 42(3):456–466, 2002.Google Scholar
  91. [VMM05]
    C. Vedruccio, E. Mascia, and V. Martines. Ultra High Frequency and Microwave Non-linear Interaction Device for Cancer Detection and Tissue Characterization, a Military Research approach to prevent Health Diseases. International Review of the Armed Forces Medical Services (IRAFMS), 78:120–132, 2005.Google Scholar
  92. [VMV04]
    A. Vogt, S. Moch, and J. A. M. Vermaseren. The three-loop splitting functions in qcd: The singlet case. Nucl. Phys. B, 691:129–181, 2004. [arXiv:hepph/0404111].zbMATHCrossRefMathSciNetGoogle Scholar
  93. [VVM05]
    J. A. M. Vermaseren, A. Vogt, and S. Moch. The third-order qcd corrections to deep-inelastic scattering by photon exchange. Nucl. Phys. B, 724:3–182, 2005. [arXiv:hep-ph/0504242].zbMATHCrossRefMathSciNetGoogle Scholar
  94. [vzGG99]
    J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.Google Scholar
  95. [Weg97]
    K. Wegschaider. Computer generated proofs of binomial multi-sum identities. Diploma thesis, RISC Linz, Johannes Kepler University, 1997.Google Scholar
  96. [Whi90]
    E.T. Whittaker. A Course in Modern Analysis. Cambridge University Press, 1990.Google Scholar
  97. [Zei90a]
    D. Zeilberger. A Fast Algorithm for Proving Terminating Hypergeometric Identities. Discrete Math., 80:207–211, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  98. [Zei90b]
    D. Zeilberger. A Holonomic Systems Approach to Special Function Identitites. J. Comput. Appl. Math., 32:321–368, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  99. [ZLF92]
    V.E. Zakharov, V.S. L’vov, and G. Falkovich. Kolmogorov Spectra of Turbulence. Springer, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Paule
    • 1
  • Bruno Buchberger
    • 1
  • Lena Kartashova
    • 1
  • Manuel Kauers
    • 1
  • Carsten Schneider
    • 1
  • Franz Winkler
    • 1
  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler University Linz (JKU)LinzAustria

Personalised recommendations