Advertisement

Information and Semantics in Databases and on the Web

  • Roland Wagner
  • Josef Küng
  • Birgit Pröll
  • Christina Buttinger
  • Christina Feilmayr
  • Bernhard Freudenthaler
  • Michael Guttenbrunner
  • Christian Hawel
  • Melanie Himsl
  • Daniel Jabornig
  • Werner Leithner
  • Stefan Parzer
  • Reinhard Stumptner
  • Stefan Wagner
  • Wolfram Wöß
Chapter
  • 479 Downloads

Abstract

The world we are living in is predominated by information affecting our business as well as private lives and thus, the time we are living in is commonly referred to as “information age” or “knowledge age”. Information and knowledge, the latter providing the additional potential to infer new knowledge, are contained in databases, ranging from traditional ones storing structured data, via, knowledge bases, semantic networks, and ontologies up to the World Wide Web (WWW), which can be regarded as a huge distributed database following the hypertext paradigm of linked information, containing unstructured respectively semi-structured data. Information systems enable the retrieval of information and knowledge stored in their database component, e.g., via search engines for the WWW case. Current research approaches enable the management of semantics, i.e., the meaning of data, e.g., the Semantic Web aiming at making information on the WWW interpretable for machines.

Keywords

Decision Support System Information Extraction Structural Health Monitoring Semantic Network Case Base Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AI99]
    Douglas E. Appelt and David J. Israel. Introduction to information extraction technology. A tutorial prepared for IJCAI-99, Stockholm, Schweden, 1999.Google Scholar
  2. [AKW06]
    Saiful Akbar, Josef Küng, and Roland Wagner. Multi-feature integration on 3d model similarity retrieval. In ICDIM, pages 151–156. IEEE, 2006.Google Scholar
  3. [AKWP06]
    Saiful Akbar, Josef Küng, Roland Wagner, and Ary Setijadi Prihatmanto. Multi-feature integration with relevance feedback on 3d model similarity retrieval. In Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail Khalil Ibrahim, editors, iiWAS, volume 214 of books@ocg.at, pages 77–86. Austrian Computer Society, 2006.Google Scholar
  4. [AP94]
    Agnar Aamodt and Enric Plaza. Case-based reasoning: foundational issues, methodological variations, and system approaches. In AI Commun., pages 39–59. IOS Press, March 1994.Google Scholar
  5. [BEG+05]
    Robert Baumgartner, Thomas Eiter, Georg Gottlob, Marcus Herzog, and Christoph Koch. Information extraction for the semantic web. In Reasoning Web, pages 275–289, 2005.Google Scholar
  6. [BK04]
    Ulrich Bodenhofer and Josef Küng. Fuzzy orderings in flexible query answering systems. Soft Comput., 8(7):512–522, 2004.zbMATHCrossRefGoogle Scholar
  7. [BPP+08]
    Christina Buttinger, Birgit Pröll, Jürgen Palkoska, Werner Retschitzegger, Manfred Schauer, and Reinhold Immler. Jobolize - headhunting by information extraction in the era of web 2.0. In Proceedings of the 7th International Workshop on Web-Oriented Software Technologies (IWWOST 2008), Yorktown Heights, New York, July 2008.Google Scholar
  8. [Bro07]
    Michael L. Brodie. Computer science 2.0: A new world of data management. In Christoph Koch, Johannes Gehrke, Minos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand Deshpande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors, VLDB, page 1161. ACM, 2007.Google Scholar
  9. [CJKW07]
    Steve Cook, Gareth Jones, Stuart Kent, and Alan Wills. Domain-specific development with visual studio dsl tools. Addison-Wesley Professional, 2007.Google Scholar
  10. [CMBT02]
    H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A framework and graphical development environment for robust nlp tools and applications. In Proceedings of the 40th Annual Meeting of the ACL, 2002.Google Scholar
  11. [cob07]
    COBIT, Control Objectives for Information and related Technology, Version 4.1, 2007. http://www.itgi.org.Google Scholar
  12. [Cun06]
    Hamish Cunningham. Information Extraction, Automatic. Preprint, 18th November 2004, at http://gate.ac.uk/sale/ell2/ie/main.pdf. Encyclopedia of Language and Linguistics, 2nd Edition, Elsevier, 5:665–677, November 2006.Google Scholar
  13. [DHJ+08]
    Dirk Draheim, Melanie Himsl, Daniel Jabornig, Josef Küng, Werner Leithner, Peter Regner, and Thomas Wiesinger. Concept and pragmatics of an intuitive visualization-oriented metamodeling tool (accepted with minor revisions). In Journal of Visual Languages and Computing (JVLC). Elsevier, 2008.Google Scholar
  14. [DKW01]
    Tran Khanh Dang, Josef Küng, and Roland Wagner. The sh-tree: A super hybrid index structure for multidimensional data. In Heinrich C. Mayr, Jirí Lazansk´y, Gerald Quirchmayr, and Pavel Vogel, editors, DEXA, volume 2113 of Lecture Notes in Computer Science, pages 340–349. Springer, 2001.Google Scholar
  15. [DO01]
    S. Dolcinar and R. Otter. Marktforschung für die österreichische Hotelklassifizierung. Austrian Chamber of Commerce, Vienna, 2001.Google Scholar
  16. [Fei07]
    Christina Feilmayr. Ontologiebasierte informationsextraktion in webbasierten tourismusinformationssystemen. Master’s thesis, Johannes Kepler University, Linz, December 2007.Google Scholar
  17. [FFSK09]
    Bernhard Freudenthaler, Martin Fritz, Reinhard Stumptner, and Josef Küng. Case-based Reasoning for the Automated Assessment of Simple Structures in Terms of Structural Health Monitoring (Submitted for publication). In 7th International Workshop on Structural Health Monitoring 2009, 2009.Google Scholar
  18. [FGP+09]
    Christina Feilmayr, Christoph Grün, Birgit Pröll, Hannes Werthner, and Robert Barta. Covering the semantic space of tourism - an approach based on modularized ontologies. In Workshop on Context, Information And Ontologies. ESWC2009, March 2009. Accepted for publication.Google Scholar
  19. [FGSK08]
    Bernhard Freudenthaler, Georg Gutenbrunner, Reinhard Stumptner, and Josef Küng. Case-based Decision Support for Bridge Monitoring. In Third International Multi-Conference on Computing in the Global Information Technology 2008, 2008.Google Scholar
  20. [FGSK09]
    Bernhard Freudenthaler, Georg Gutenbrunner, Reinhard Stumptner, and Josef Küng. Case-Based Decision Support for Bridge Monitoring (Submitted for publication). In International Journal On Advances in Intelligent Systems, 2009.Google Scholar
  21. [FSFK07]
    Ernst Forstner, Reinhard Stumptner, Bernhard Freudenthaler, and Josef Küng. VCDECIS–knowledge online advanced content management using a semantic network. In DEXA Workshops, pages 312–316. IEEE Computer Society, 2007.Google Scholar
  22. [FSFK08]
    Bernhard Freudenthaler, Reinhard Stumptner, Ernst Forstner, and Josef Küng. Case-based Reasoning for Structural Health Monitoring. In Fourth European Workshop on Structural Health Monitoring 2008, 2008.Google Scholar
  23. [GBPW05a]
    Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar Weippl. On cooperatively creating dynamic ontologies. In HYPERTEXT ’05: Proceedings of the sixteenth ACM conference on Hypertext and hypermedia, pages 208–210, New York, NY, USA, 2005. ACM Press.Google Scholar
  24. [GBPW05b]
    Eva Gahleitner, Wernher Behrendt, Jürgen Palkoska, and Edgar Weippl. On cooperatively creating dynamic ontologies. In HYPERTEXT ’05: Proceedings of the sixteenth ACM conference on Hypertext and hypermedia, pages 208–210, New York, NY, USA, 2005. ACM Press.Google Scholar
  25. [GMF09]
    Eclipse graphical modeling framework (gmf), 2009. http://www.eclipse.org/gmf/.Google Scholar
  26. [Gru93]
    Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl. Acquis., 5(2):199–220, June 1993.CrossRefGoogle Scholar
  27. [Gua98]
    Nicola Guarino. Formal ontology and information systems, 1998.Google Scholar
  28. [GWG06]
    Andreas Gruber, Rupert Westenthaler, and Eva Gahleitner. Supporting domain experts in creating formal knowledge models (ontologies), 2006.Google Scholar
  29. [GWP+08]
    Christoph Grün, Hannes Werthner, Birgit Pröll, Werner Retschitzegger, and Wieland Schwinger. Assisting tourists on the move- an evaluation of mobile tourist guides. In ICMB ’08: Proceedings of the 2008 7th International Conference on Mobile Business, pages 171–180, Washington, DC, USA, 2008. IEEE Computer Society.Google Scholar
  30. [HJL+07]
    Melanie Himsl, Daniel Jabornig, Werner Leithner, Peter Regner, Thomas Wiesinger, Josef Küng, and Dirk Draheim. An iterative process for adaptive meta- and instance modeling. In Roland Wagner, Norman Revell, and Günther Pernul, editors, DEXA, volume 4653 of Lecture Notes in Computer Science, pages 519–528. Springer, 2007.Google Scholar
  31. [iti06]
    ITIL, IT Infrastructure Library, Version 3, 2006. http://www.ogc.gov.uk.Google Scholar
  32. [Jab06]
    Daniel Jabornig. An adaptive tool for meta and instance modeling. Master’s thesis, Johannes Kepler University, Linz, 2006.Google Scholar
  33. [Kel97]
    S. Kelly. GOPRR Description (Appendix 1). PhD thesis, 1997.Google Scholar
  34. [KM95]
    Michael Klein and Leif Methlie. Knowledge based decision support systems, 1995.Google Scholar
  35. [KP97]
    Josef Küng and Jürgen Palkoska. Vqs - a vague query system prototype. In DEXA Workshop, pages 614–618, 1997.Google Scholar
  36. [KP98]
    Josef Küng and Jürgen Palkoska. Vague joins - an extention of the vague query system vqs. In DEXA Workshop, pages 997–1001, 1998.Google Scholar
  37. [KP99]
    Josef Küng and Jürgen Palkoska. An incremental hypercube approach for finding best matches for vague queries. In Trevor J. M. Bench-Capon, Giovanni Soda, and A. Min Tjoa, editors, DEXA, volume 1677 of Lecture Notes in Computer Science, pages 238–249. Springer, 1999.Google Scholar
  38. [KP02]
    S Kent and O Patrasciu. Kent Modelling Framework Version - Tutorial (Draft). Computing Laboratory, Canterbury, UK, December 2002.Google Scholar
  39. [KPRR06]
    G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger. Web Engineering - Systematic Development of Web Appplications. Wiley, 2006.Google Scholar
  40. [LMB+01]
    A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J. Sprinkle, and P. Volgyesi. The Generic Modeling Environment. In Workshop on Intelligent Signal Processing, Budapest, Hungary, volume 17, May 2001.Google Scholar
  41. [MB98]
    Robert C. Miller and Krishna Bharat. Sphinx: a framework for creating personal, site-specific web crawlers. Comput. Netw. ISDN Syst., 30(1-7):119–130, 1998.CrossRefGoogle Scholar
  42. [Met01]
    MetaCase. Domain-Specific Modelling: 10 Times Faster Than UML (White Paper). MetaCase Consulting, Finland, 2001.Google Scholar
  43. [MKSW99]
    John Makhoul, Francis Kubala, Richard Schwartz, and Ralph Weischedel. Performance measures for information extraction. In In Proceedings of DARPA Broadcast News Workshop, pages 249–252, 1999.Google Scholar
  44. [MyF]
    Myfaces (accessed may 2008). http://www.myfaces.org.Google Scholar
  45. [omg06]
    omg. Meta Object Facility (MOF) Core Specification Version 2.0, 2006.Google Scholar
  46. [Par08]
    Stefan Parzer. Klassifizierung und informationsextraktion aus touristischen webseiten unter anwendung einer support vector machine und regelbasierter methoden. Master’s thesis, Johannes Kepler University, Linz, Januar 2008.Google Scholar
  47. [Pig]
    Piggy bank (accessed februar 2009). http://simile.mit.edu/wiki/Piggy Bank.Google Scholar
  48. [PR00]
    Birgit Pröll and Werner Retschitzegger. Discovering next generation tourism information systems: A tour on tiscover. Journal of Travel Research, 39:182–191, 2000.CrossRefGoogle Scholar
  49. [REN01]
    J. Janneck R. Essar and M. Naedele. The Moses Tool Suite - A Tutorial. Version 1.2. Computer, Engineering and Networks Laboratory, ETH Zurich, 2001.Google Scholar
  50. [RS06]
    P. Warren R. Studer, J. Davies. Semantic Web Technologies -Trends and Research in Ontology-Based Systems. John Wiley and Sons, 2006.Google Scholar
  51. [SN07]
    Vojtech Svatek and Marek Nekvasil. The ex project: Web information extraction using extraction ontologies, 2007.Google Scholar
  52. [Sol]
    Solvent (accessed februar 2009). http://simile.mit.edu/wiki/Solvent.Google Scholar
  53. [VNCN05]
    Paola Velardi, Roberto Navigl, Alessandro Cucchiarelli, and Francesca Neri. Ontology Learning from Text: Methods, Evaluation and Applications, volume 123, chapter Evaluation of OntoLearn, a Methodology for Automatic Learning ofDomain Ontologies. Frontiers in Artificial Intelligence and Applications, ios press edition, July 2005.Google Scholar
  54. [WK99]
    Hannes Werthner and Stefan Klein. Information Technology and Tourism - A Challenging Relationship. Spinger, Vienna, 1999.Google Scholar
  55. [WKE+07]
    Tim Weizel, Wolfgang König, Andreas Eckhardt, Sven Laumer, and Jens Lippert. Recruting Trends 2007 - European Union - An empirical survey with the top 1.000-enterp. in the EU. Number 2007-798. 2007.Google Scholar
  56. [XUL]
    Xul (accessed may 2008). http://developer.mozilla.org/.Google Scholar
  57. [ZLH06]
    Michael Zwick, Christian Lettner, and Christian Hawel. Implementing automated analyses in an active data warehouse environment using workflow technology. In Dirk Draheim and Gerald Weber, editors, TEAA, volume 4473 of Lecture Notes in Computer Science, pages 341–354. Springer, 2006.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roland Wagner
    • 1
  • Josef Küng
    • 1
  • Birgit Pröll
    • 1
  • Christina Buttinger
    • 1
  • Christina Feilmayr
    • 1
  • Bernhard Freudenthaler
    • 1
  • Michael Guttenbrunner
    • 1
  • Christian Hawel
    • 2
  • Melanie Himsl
    • 1
  • Daniel Jabornig
    • 1
  • Werner Leithner
    • 1
  • Stefan Parzer
    • 1
  • Reinhard Stumptner
    • 1
  • Stefan Wagner
    • 1
  • Wolfram Wöß
    • 1
  1. 1.Institute for Application Oriented Knowledge Processing (FAW)Johannes Kepler University Linz (JKU)LinzAustria
  2. 2.Software Competence Center Hagenberg (SCCH)HagenbergAustria

Personalised recommendations