Advertisement

Recent Advances in Understanding Gas and Aerosol Transport in the Lungs: Application to Predictions of Regional Deposition

  • Laleh Golshahi
  • W. H. Finlay
Chapter
  • 1.3k Downloads
Part of the Advances in Transport Phenomena book series (ADVTRANS, volume 1)

Abstract

Recent developments in understanding the physical processes responsible for gas and aerosol transport in the alveolar region of the lung are reviewed. Predicting regional deposition in the lungs is important both for environmental exposure and respiratory drug delivery. There is a strong connection between transport and deposition in the lung; thus, a large number of experiments, theoretical developments and computational studies on gas and aerosol transport, both in animals and with human subjects, have been developed so far to enhance our understandings of possible adverse effects of toxic particulate matter inhalation and determining therapeutic strategies for inhalation drug delivery (i.e. aerosol administration). Due to the intrinsic limitations of accurate measurement of detailed regional deposition in the lung, mathematical models have been favored extensively for prediction of regional deposition. The goal of the present article is to review recent advances in model development for predicting the regional deposition in the lung with a focus on the lung parenchyma. These advances build on recent model predictions considering the complex structure, time-varying, and cyclic process of alveolar expansion and contraction. Since validation of the developed mathematical models has improved with the advent of an experimental technique known as aerosol bolus dispersion, the latter subject has been linked to the review of the subject.

Keywords

Acinus aerosol bolus dispersion intrapulmonary mixing lung lumen pulmonary mechanics regional deposition simulation transport mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oberdorster, G.: Pulmonary effects of inhaled ultrafine particles. International Archives of Occupational and Environmental Health 74, 1–8 (2001)CrossRefGoogle Scholar
  2. 2.
    Chang, H.K.: Convection, diffusion and their interaction in the bronchial tree. Advances in Experimental Medicine and Biology 227, 39–52 (1988)Google Scholar
  3. 3.
    Grotberg, J.B.: Respiratory Fluid Mechanics and Transport Processes. Annual Review of Biomedical Engineering 3, 421–457 (2001)CrossRefGoogle Scholar
  4. 4.
    Grotberg, J.B.: Pulmonary flow and transport phenomena. Annual Review of Fluid Mechanics 26, 529–571 (1994)CrossRefGoogle Scholar
  5. 5.
    Ultman, J.S.: Gas transport in the conducting airways. In: Engel, L.A., Paiva, M. (eds.) Gas Mixing and Distribution in the Lung. Lung Biology in Health and Disease Series, vol. 25, pp. 63–136. M. Dekker, New York (1985)Google Scholar
  6. 6.
    Pedley, T.J.: Pulmonary fluid dynamics. Annual Review of Fluid Mechanics 9, 229–274 (1977)CrossRefGoogle Scholar
  7. 7.
    Finlay, W.H., Martin, A.R.: Recent advances in predictive understanding of respiratory tract deposition. Journal of Aerosol Medicine 21, 1–17 (2008)Google Scholar
  8. 8.
    Heyder, J., Balnchard, J.D., Feldman, H.A., Brain, J.D.: Convective mixing in human respiratory tract: estimated with aerosol boli. Journal of Applied Physiology 64, 1273–1278 (1988)Google Scholar
  9. 9.
    Finlay, W.H.: The Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic Press, London (2001)Google Scholar
  10. 10.
    Fresconi, F.E., Prasad, A.K.: Convective dispersion during steady flow in the conducting airways of the human lung. Journal of Biomechanical Engineering 130, 011015, 1–9 (2008)CrossRefGoogle Scholar
  11. 11.
    Zhao, Y., Lieber, B.B.: Steady inspiratory flow in a model symmetric bifurcation. Transactions of the ASME 116, 488–496 (1994)Google Scholar
  12. 12.
    Zhao, Y., Lieber, B.B.: Steady expiratory flow in a model symmetric bifurcation. Transactions of the ASME 116, 318–323 (1994)Google Scholar
  13. 13.
    Zhao, Y., Brunskill, C.T., Lieber, B.B.: Inspiratory and expiratory steady flow analysis in a model symmetrically bifurcating airway. Transactions of the ASME 119, 52–58 (1997)Google Scholar
  14. 14.
    Scherer, P.W., Haselton, F.R.: Bronchial bifurcations and respiratory mass transport. Science 208, 69–71 (1980)CrossRefGoogle Scholar
  15. 15.
    Schroter, R.C., Sudlow, M.F.: Flow patterns in models of the human bronchial airways. Respiration Physiology 7, 341–355 (1969)CrossRefGoogle Scholar
  16. 16.
    Scherer, P.W., Haselton, F.R.: Convective exchange in oscillatory flow through bronchial-tree models. Journal of Applied Physiology 53, 1023–1033 (1982)CrossRefGoogle Scholar
  17. 17.
    Thomson, M.L., Short, M.D.: Mucociliary function in health, chronic obstructive airway disease, and asbestosis. Journal of Applied Physiology 26, 535–539 (1969)Google Scholar
  18. 18.
    Horsfield, K., Davies, A., Mills, C., Cumming, G.: Effect of flow oscillations on the stationary concentration front in a hollow cast of the airways. Lung 157, 103–111 (1980)CrossRefGoogle Scholar
  19. 19.
    West, J.B., Hugh-Jones, P.: Pulsatile gas flow in bronchi caused by the heart beat. Journal of Applied Physiology 16, 697–702 (1961)Google Scholar
  20. 20.
    Fukuchi, Y., Roussos, C.S., Macklem, P.T., Engel, L.A.: Convection, diffusion and cardiogenic mixing of inspired gas in the lung: an experimental approach. Respiratory Physiology 26, 77–90 (1976)CrossRefGoogle Scholar
  21. 21.
    Burwen, D.R., Watson, J., Brown, R., Josa, M., Slutsky, A.S.: Effect of cardiogenic oscillations on gas mixing during tracheal insufflation of oxygen. Journal of Applied Physiology 60, 965–971 (1986)CrossRefGoogle Scholar
  22. 22.
    Cybulsky, I.J., Abel, J.G., Menon, A.S., Salerno, T.A., Lichtenstein, S.V., Slutsky, A.S.: Contribution of cardiogenic oscillations to gas exchange in constant-flow ventilation. Journal of Applied Physiology 63, 564–570 (1987)Google Scholar
  23. 23.
    Engel, L.A.: Gas mixing within the acinus of the lung. Journal of Applied Physiology 54, 609–618 (1983)CrossRefGoogle Scholar
  24. 24.
    Engel, L.A., Menkes, H., Wood, L.D.H., Utz, G., Joubert, J., Macklem, P.T.: Gas mixing during breath holding studied by intrapulmonary gas sampling. Journal of Applied Physiology 35(1), 9–17 (1973)Google Scholar
  25. 25.
    Engel, L.A., Wood, L.D.H., Utz, G., Macklem, P.T.: Gas mixing during inspiration. Journal of Applied Physiology 35, 18–24 (1973)Google Scholar
  26. 26.
    Fukuchi, Y., Cosio, M., Kelly, S., Engel, L.A.: Influence of pericardial fluid on cardiogenic gas mixing in the lung. Journal of Applied Physiology 42, 5–12 (1977)Google Scholar
  27. 27.
    Horsfield, K., Gabe, I., Mills, C., Buckman, M., Cumming, G.: Effect of heart rate and stroke volume on gas mixing in dog lung. Journal of Applied Physiology 53, 1603–1607 (1982)Google Scholar
  28. 28.
    Ingenito, E., Kamm, R.D., Watson, J.W., Slutsky, A.S.: A model of constant flow ventilation in a dog lung. Journal of Applied Physiology 64, 2150–2159 (1985)Google Scholar
  29. 29.
    Sikand, R.S., Magnussen, H., Scheid, P., Piiper, J.: Convective and diffusive gas mixing in human lungs: experiments and model analysis. Journal of Applied Physiology 40, 362–371 (1976)Google Scholar
  30. 30.
    Slutsky, A.S.: Gas mixing by cardiogenic oscillations: a theoretical quantitative analysis. Journal of Applied Physiology 51, 1287–1293 (1981)Google Scholar
  31. 31.
    Slutsky, A.S., Khoo, M.C.K., Brown, R.: Simulation of gas transport due to cardiogenic oscillations. Journal of Applied Physiology 58, 1331–1339 (1985)Google Scholar
  32. 32.
    Wei, J.H., Hoffman, E.A., Ritman, E.L., Wood, E.H.: Cardiogenic motion of right lung parenchyma in anesthetized intact dogs. Journal of Applied Physiology 58, 384–391 (1985)Google Scholar
  33. 33.
    Mackenzie, C.F., Skacel, M., Barnas, G.M., Brampton, W.J., Alana, C.A.: Effects of cardiac oscillations and lung volume on acinar gas mixing during apnea. Journal of Applied Physiology 68, 2013–2018 (1990)CrossRefGoogle Scholar
  34. 34.
    Fowler, W.S.: Lung function studies. II. The respiratory dead space. The American Journal of Physiology 154, 405–416 (1948)Google Scholar
  35. 35.
    Bidani, A., Flumerfelt, R.W., Crandall, E.D.: Analysis of the effects of pulsatile capillary blood flow and volume on gas exchange. Respiration Physiology 35, 27–42 (1978)CrossRefGoogle Scholar
  36. 36.
    Hauge, A., Nicolaysen, G.: Pulmonary O2 transfer during pulsatile and non- pulsatile perfusion (Abstract). Acta Physiologica Scandinavica 109, 325–332 (1980)CrossRefGoogle Scholar
  37. 37.
    Paiva, M., Engel, L.A.: Theoretical studies of gas mixing and ventilation distribution in the lung. Physiological Reviews 67, 750–796 (1987)Google Scholar
  38. 38.
    Taulbee, D.B., Yu, C.P.: A theory of aerosol deposition in the human respiratory tract. Journal of Applied Physiology 38, 77–85 (1975)Google Scholar
  39. 39.
    Paiva, M.: Computation of the boundary conditions for diffusion in the human lung. Computers and biomedical research 5, 585–595 (1972)CrossRefGoogle Scholar
  40. 40.
    Scherer, P.W., Shendalman, L.H., Greene, N.M.: Simultaneous diffusion and convection in single breath lung washout. Bulletin of mathematical biophysics 34, 393–412 (1972)zbMATHCrossRefGoogle Scholar
  41. 41.
    Weibel, E.R.: Morphology of the lung. Academic Press, London (1963)Google Scholar
  42. 42.
    Darquenne, C., Paiva, M.: One-dimensional simulation of aerosol transport and deposition in the human lung. Journal of applied Physiology 77, 2889–2898 (1994)Google Scholar
  43. 43.
    Yu, C.P., Diu, C.K.: A comparative study of aerosol deposition in different lung models. American Industrial Hygiene Association Journal 43, 54–65 (1982)Google Scholar
  44. 44.
    Scherer, P.W., Shendalman, L.H., Greene, N.M., Bouhuys, A.: Measurement of axial diffusivities in a model of the bronchial airways. Journal of applied Physiology 38, 719–723 (1975)Google Scholar
  45. 45.
    Asgharian, B., Price, O.T.: Deposition of ultrafine (NANO) particles in the human lung. Inhalation Toxicology 19, 1045–1054 (2007)CrossRefGoogle Scholar
  46. 46.
    Lee, J.W., Lee, D.Y., Kim, W.S.: Dispersion of an aerosol bolus in a double bifurcation. Journal of Aerosol Science 31, 491–505 (2000)CrossRefGoogle Scholar
  47. 47.
    Lee, D.Y., Lee, J.W.: Dispersion during exhalation of aerosol bolus in a double bifurcation. Journal of Aerosol Science 32, 805–815 (2001)CrossRefGoogle Scholar
  48. 48.
    Schulz, H., Heilmann, P., Hillebrecht, A., Gebhart, J., Meyer, M., Piiper, J., Heyder, J.: Convective ad diffusive gas transport in canine intrapulmonary airways. Journal of Applied Physiology 72, 1557–1562 (1992)Google Scholar
  49. 49.
    Yu, C.P.: On equation of gas transport in the lung. Respiration Physiology 23, 257–266 (1975)CrossRefGoogle Scholar
  50. 50.
    Taylor, G.I.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London Series A 219, 186–203 (1953)CrossRefGoogle Scholar
  51. 51.
    Taylor, G.I.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proceedings of the Royal Society of London Series A 225, 473–477 (1954)CrossRefGoogle Scholar
  52. 52.
    Heyder, J., Gebhart, J., Rudolf, G., Schiller, C.F., Stalhofen, W.: Deposition of particles in the human respiratory tract in the size range 0.005-15 micron. Journal of Aerosol Science 17, 811–825 (1986)CrossRefGoogle Scholar
  53. 53.
    Darquenne, C.: A realistic two-dimensional model of aerosol transport and deposition in the alveolar zone of the human lung. Journal of Aerosol Science 32, 1161–1174 (2001)CrossRefGoogle Scholar
  54. 54.
    Darquenne, C.: Heterogeneity of aerosol deposition in a two-dimensional model of human alveolated ducts. Journal of Aerosol Science 33, 1261–1278 (2002)CrossRefGoogle Scholar
  55. 55.
    Darquenne, C., Prisk, G.K.: Effect of gravitational sedimentation on simulated aerosol dispersion in the human acinus. Journal of Aerosol Science 34, 405–418 (2003)CrossRefGoogle Scholar
  56. 56.
    Darquenne, C., Paiva, M.: Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung. Journal of applied Physiology 80, 1401–1414 (1996)Google Scholar
  57. 57.
    Henry, F., Butler, J., Tsuda, A.: Kinematically irreversible acinar flow: A departure from classical dispersive aerosol transport theories. Journal of Applied Physiology 92, 835–845 (2002)Google Scholar
  58. 58.
    Lee, D., Lee, J.: Characteristics of particle transport in an expanding or contracting alveolated tube. Journal of Aerosol Science 34, 1193–1215 (2003)CrossRefGoogle Scholar
  59. 59.
    Tsuda, A., Butler, J.P., Fredberg, J.J.: Effects of alveolated duct structure on aerosol kinetics I. Diffusional deposition in the absence of gravity. Journal of Applied Physiology 76, 2497–2509 (1994)Google Scholar
  60. 60.
    Tsuda, A., Butler, J.P., Fredberg, J.J.: Effects of alveolated duct structure on aerosol kinetics. II. Gravitational sedimentation and inertial impaction. Journal of Applied Physiology 76, 2410–2516 (1994)Google Scholar
  61. 61.
    Harrington, L., Prisk, G.K., Darquenne, C.: Importance of the bifurcation zone and branch orientation in simulated aerosol deposition in the alveolar zone of the human lung. Journal of Aerosol Science 37, 37–62 (2006)CrossRefGoogle Scholar
  62. 62.
    Haber, S., Tsuda, A.: The effect of flow generated by a rhythmically expanding pulmonary acinus on aerosol dynamics. Journal of Aerosol Science 29, 309–322 (1998)CrossRefGoogle Scholar
  63. 63.
    Balashazy, I., Hofmann, W., Farkas, A., Madas, B.G.: Three-dimensional model for aerosol transport and deposition in expanding and contracting alveoli. Inhalation Toxicology 20, 611–621 (2008)CrossRefGoogle Scholar
  64. 64.
    Haber, S., Yitzhak, D., Tsuda, A.: Gravitational deposition in a rhythmically expanding and contracting alveolus. Journal of Applied Physiology 95, 657–671 (2003)Google Scholar
  65. 65.
    Haber, S., Butler, J.P., Brenner, H., Emanuel, I., Tsuda, A.: Shear flow over a self-similar expanding pulmonary alveolus during rhythmical breathing. Journal of Fluid Mechanics 405, 243–268 (2000)zbMATHCrossRefGoogle Scholar
  66. 66.
    Altshuler, B., Palmes, E.D., Yarmus, L., Nelson, N.: Intrapulmonary mixing of gases studied with aerosols. Journal of Applied Physiology 14, 321–327 (1959)Google Scholar
  67. 67.
    Heyder, J., Davies, C.N.: The breathing of half micron aerosols. III. Dispersion of particles in the respiratory tract. Journal of Aerosol Science 2, 437–452 (1971)CrossRefGoogle Scholar
  68. 68.
    Muir, D.C.F.: Distribution of aerosol particles in expired air. Journal of Applied Physiology 23, 210–214 (1967)Google Scholar
  69. 69.
    Taulbee, D.B., Yu, C.P., Heyder, J.: Aerosol transport in the human lung from analysis of single breaths. Journal of Applied Physiology 44, 803–812 (1978)Google Scholar
  70. 70.
    Heyder, J., Blanchard, J.D., Feldman, H.A., Brain, J.D.: Convective mixing in human respiratory tract: estimates with aerosol boli. Journal of applied physiology 64, 1273–1278 (1988)Google Scholar
  71. 71.
    Anderson, P.J., Blanchard, J.D., Brain, J.D., Feldman, H.A., McNamara, J.J., Heyder, J.J.: Effect of cystic fibrosis on inhaled aerosol boluses. The American Review of Respiratory Disease 140, 1317–1324 (1989)Google Scholar
  72. 72.
    Hughes, J.M.B., Amis, T.C.: Regional ventilation distribution. In: Engel, L.A., Paiva, M. (eds.) Gas Mixing and Distribution in the Lung. Lung Biology in Health and Disease Series, vol. 25, pp. 177–220. M. Dekker, New York (1995)Google Scholar
  73. 73.
    Woolcock, A.J., Vincent, N.J., Macklem, P.T.: Frequency dependence of compliance as a test for obstruction in the small airways. The Journal of Clinical Investigation 48, 1097–1106 (1969)CrossRefGoogle Scholar
  74. 74.
    Banerjee, M., Evans, J.N., Jaeger, M.J.: Uneven ventilation in smokers. Respiration Physiology 27, 277–291 (1976)CrossRefGoogle Scholar
  75. 75.
    Brand, P., Rieger, C., Schulz, H., Beinert, T., Heyder, J.: Aerosol bolus dispersion in healthy subjects. The European Respiratory Journal 10, 460–467 (1997)CrossRefGoogle Scholar
  76. 76.
    Gebhart, J., Heigwer, G., Heyder, J., Roth, C., Stahlhofen, W.: The use of light-scattering photometry in aerosol medicine. Journal of Aerosol Medicine 1, 89–112 (1988)CrossRefGoogle Scholar
  77. 77.
    Rosenthal, F.S.: Aerosol deposition and dispersion characterize lung injury in a canine model of emphysema. Journal of Applied Physiology 78, 1585–1595 (1995)Google Scholar
  78. 78.
    Keefe, M.J., Bennett, W.D., Dewitt, P., Seal, E., Strong, A., Gerrity, T.: The effect of ozone exposure on the dispersion of inhaled aerosol boluses in healthy human subjects. The American Review of Respiratory Disease 144, 23–30 (1991)Google Scholar
  79. 79.
    Brand, P., App, E.M., Meyer, T.: Aerosol bolus dispersion in patients with bronchiolitis obliterans after heart-lung and double-lung transplantation. Journal of Aerosol Medicine 11, 41–53 (1998)CrossRefGoogle Scholar
  80. 80.
    Brand, P., Rieger, C., Beinert, T., Heyder, J.: Aerosol derived airway morphometry in healthy subjects. European Respiratory Journal 8, 1639–1646 (1995)CrossRefGoogle Scholar
  81. 81.
    Schulz, H., Schulz, A., Brand, P., Tuch, T., von Mutius, E., Erdl, R., Reinhardt, D., Heyder, J.: Aerosol bolus dispersion and effective airway diameters in mildly asthmatic children. European Respiratory Journal 8, 566–573 (1995)Google Scholar
  82. 82.
    Lehnigk, B., Schleiss, M., Brand, P., Heyder, J., Magnussen, H., Jorres, R.A.: Aerosol-derived airway morphometry (ADAM) in patients with lung emphysema diagnosed by computed tomography-reproducibility, diagnostic information, and modeling. European Journal of Medical Research 12, 74–83 (2007)Google Scholar
  83. 83.
    Brown, J.S., Gerrity, T.R., Bennett, W.D., Kim, C.S., House, D.E.: Dispersion of aerosol boluses in the human lung: dependence on lung volume, bolus volume, and gender. Journal of Applied Physiology 79, 1787–1795 (1995)Google Scholar
  84. 84.
    Schulz, A., Tuch, T., Brand, P., Schulz, H., Erdl, R., von Mutius, E., Reinhardt, D., Heyder, J.: Aerosol bolus dispersion in the respiratory tract of children. Experimental Lung Research 20, 119–130 (1994)CrossRefGoogle Scholar
  85. 85.
    Schulz, H., Eder, G., Heyder, J.: Lung volume is a determinant of aerosol bolus dispersion. Journal of Aerosol Medicine 16, 255–262 (2003)CrossRefGoogle Scholar
  86. 86.
    Zeltner, T.B., Sweeney, T.D., Skornik, W.A., Feldman, H.A., Brain, J.D.: Retention and clearance of 0.9 micron particles inhaled by hamsters during rest or exercise. Journal of Applied Physiology 70, 1137–1145 (1991)Google Scholar
  87. 87.
    Brain, J.D., Valberg, P.A.: Deposition of aerosol in the respiratory tract. The American Review of the Respiratory Disease 120, 1325–1373 (1979)Google Scholar
  88. 88.
    Fuch, N.A.: The mechanics of aerosols. Pergamon Press, Oxford (1964)Google Scholar
  89. 89.
    Pich, J.: Theory of gravitational deposition of particles from laminar flows in channels. Journal of Aerosol Science 3, 351–361 (1972)CrossRefGoogle Scholar
  90. 90.
    Wang, C.S.: Gravitational deposition of particles from laminar flows in inclined channels. Journal of Aerosol Science 6, 191–204 (1975)CrossRefGoogle Scholar
  91. 91.
    Heyder, J.: Gravitational deposition of aerosol particles within a system of randomly oriented tubes. Journal of Aerosol Science 6, 133–137 (1975)CrossRefGoogle Scholar
  92. 92.
    Federspiel, W.J., Fredberg, J.J.: Axial dispersion in respiratory bronchioles and alveolar ducts. Journal of Applied Physiology 64, 2614–2621 (1988)Google Scholar
  93. 93.
    Tsuda, A., Federspiel, W.J., Grant Jr., P.A., Fredberg, J.J.: Axial dispersion of inert species in alveolated channels. Chemical Engineering Science 46, 1419–1426 (1991)CrossRefGoogle Scholar
  94. 94.
    Aris, R.: On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London Series A 235, 67–77 (1956)CrossRefGoogle Scholar
  95. 95.
    Verbanck, S., Paiva, M.: Effective axial diffusion in an expansile alveolar duct model. Respiratory Physiology 73, 273–278 (1988)CrossRefGoogle Scholar
  96. 96.
    Darquenne, C., Prisk, G.K.: Effect of small flow reversals on aerosol mixing in the alveolar region of the human lung. Journal of Applied Physiology 97, 2083–2089 (2004)CrossRefGoogle Scholar
  97. 97.
    Butler, J.P., Tsuda, A.: Effect of convective stretching and folding on aerosol mixing deep in the lung, assessed by approximate entropy. Journal of Applied Physiology 83, 800–809 (1997)Google Scholar
  98. 98.
    Henry, F.S., Butler, J.P., Tsuda, A.: Kinematically irreversible acinar flow: a departure from classical dispersive aerosol transport theories. Journal of Applied Physiology 92, 835–845 (2002)Google Scholar
  99. 99.
    Tippe, A., Tsuda, A.: Recirculating flow in an expanding alveolar model: experimental evidence of flow-induced mixing of aerosols in the pulmonary acinus. Journal of Aerosol Science 31, 979–986 (2000)CrossRefGoogle Scholar
  100. 100.
    Tsuda, A., Henry, F.S., Butler, J.P.: Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus. Journal of Applied Physiology 79, 1055–1063 (1995)Google Scholar
  101. 101.
    Tsuda, A., Otani, Y., Butler, J.P.: Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion. Journal of Applied Physiology 86, 977–984 (1999)Google Scholar
  102. 102.
    Tsuda, A., Rogers, R.A., Hydon, P.E., Butler, J.P.: Chaotic mixing deep in the lung. Proceedings of the National Academy of Sciences of the United States of America 99, 10173–10178 (2002)CrossRefGoogle Scholar
  103. 103.
    Balik, G., Reis, A.H., Aydin, M., Miguel, A.F.: Behavior of submicrometer particles in periodic alveolar airflows. European Journal of Applied Physiology 102, 677–683 (2008)CrossRefGoogle Scholar
  104. 104.
    Rohsenow, W.M., Choi, H.: Heat, Mass, and Momentum Transfer, pp. 385, 441. Prentice-Hall, Englewood Cliffs (1961)Google Scholar
  105. 105.
    Park, S.S., Wexler, A.S.: Particle deposition in the pulmonary region of the human lung: A semi-empirical model of single breath transport and deposition. Journal of Aerosol Science 38, 228–245 (2007)CrossRefGoogle Scholar
  106. 106.
    Park, S.S., Wexler, A.S.: Particle deposition in the pulmonary region of the human lung: Multiple breath aerosol transport and deposition. Journal of Aerosol Science 38, 509–519 (2007)CrossRefGoogle Scholar
  107. 107.
    Ramuzat, A., Reithmuller, M.L.: PIV investigations of oscillating flows within a 3D lung multiple bifurcation model. In: 11th International Symposium on Applications of Laser Techniques to Fluid Flows, paper 19-1 (2002)Google Scholar
  108. 108.
    Cheng, Y.S.: Aerosol deposition in the extrathoracic region. Journal of Aerosol Science and Technology 37, 659–671 (2003)CrossRefGoogle Scholar
  109. 109.
    Kim, C.S., Iglesias, A.J., Garcia, L.: Deposition of inhaled particles in bifurcating airway models: I. Inspiratory deposition. Journal of Aerosol Medicine 2, 1–14 (1989)zbMATHCrossRefGoogle Scholar
  110. 110.
    Kim, C.S., Iglesias, A.J., Garcia, L.: Deposition of inhaled particles in bifurcating airway models: I. Expiratory deposition. Journal of Aerosol Medicine 2, 15–27 (1989)CrossRefGoogle Scholar
  111. 111.
    Ingham, D.B.: Diffusion of aerosols from a stream flowing through a cylindrical tube. Journal of Aerosol Science 6, 125–132 (1975)CrossRefGoogle Scholar
  112. 112.
    Sarangapani, R., Wexler, A.S.: Modeling aerosol bolus dispersion in human airways. Journal of Aerosol Science 30, 1345–1362 (1999)CrossRefGoogle Scholar
  113. 113.
    Sarangapani, R., Wexler, A.S.: The role of dispersion in particle deposition in human airways. Toxicological Sciences 54, 229–236 (2000)CrossRefGoogle Scholar
  114. 114.
    Park, S.S., Wexler, A.S.: Size-dependent deposition of particles in the human lung at steady-state breathing. Journal of Aerosol Science 39, 266–276 (2008)CrossRefGoogle Scholar
  115. 115.
    Schroeter, J.D., Musante, C.J., Hwang, D., Burton, R., Guilmette, R., Martonen, T.B.: Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Journal of Aerosol Science and Technology 34, 137–143 (2001)CrossRefGoogle Scholar
  116. 116.
    Persons, D.D., Hess, G.D., Muller, W.J., Scherer, P.W.: Airway deposition of hygroscopic hetrodispersed aerosols: results of a computer calculation. Journal of Applied Physiology 63, 1195 (1987)Google Scholar
  117. 117.
    Ferron, G.A., Kreyling, W.G., Haider, B.: Inhalation of salt aerosol particles-II. Growth and deposition in the human respiratory tract. Journal of Aerosol Science 19, 611–631 (1988)CrossRefGoogle Scholar
  118. 118.
    Stapleton, K.W., Finlay, W.H., Zuberbuhler, P.: An in vitro method for determining regional dosages delivered by jet nebulizers. Journal of Aerosol Medicine 7, 325–344 (1994)CrossRefGoogle Scholar
  119. 119.
    Kaufman, J.W., Scherer, P.W., Yang, C.G.: Predicted combustion product deposition in the human airway. Toxicology 115, 123–128 (1996)CrossRefGoogle Scholar
  120. 120.
    Ferron, G.A., Oberdorster, G., Henneberg, R.: Estimation of the deposition of aerosolized drugs in the human respiratory tract due to hygroscopic growth. Journal of Aerosol Medicine 2, 271–282 (1989)CrossRefGoogle Scholar
  121. 121.
    Eisner, A.D., Graham, R.C., Martonen, T.B.: Coupled mass and energy transport phenomena in aerosol/vapor-laden-gases-I. Theory of the hygroscopic aerosol effects on temperature and relative humidity patterns of inspired air. Journal of Aerosol Science 21, 833–848 (1990)CrossRefGoogle Scholar
  122. 122.
    Graham, R.C., Eisner, A.D.: Coupled mass and energy transport phenomena in aerosol/vapor-laden gases-II. Computer modeling of water vapor/droplet interaction and entrainment. Journal of Aerosol Science 21, 849–858 (1990)CrossRefGoogle Scholar
  123. 123.
    Finlay, W.H., Stapleton, K.W.: The effect on regional lung deposition of coupled heat and mass transfer between hygroscopic droplets and their surrounding phase. Journal of Aerosol Science 26, 655–670 (1995)CrossRefGoogle Scholar
  124. 124.
    Broday, D.M., Georgopoulos, P.G.: Growth and deposition of hygroscopic particulate matter in the human lungs. Journal of Aerosol Science and Technology 34, 144–159 (2001)CrossRefGoogle Scholar
  125. 125.
    Saleh, R., Shihadeh, A.: Hygroscopic growth and evaporation in an aerosol with boundary heat and mass transfer. Journal of Aerosol Science 38, 1–16 (2007)CrossRefGoogle Scholar
  126. 126.
    Longest, P.W., Xi, J.: Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Journal of Aerosol Science and Technology 42, 579–602 (2008)CrossRefGoogle Scholar
  127. 127.
    Asgharian, B.: A model of deposition of hygroscopic particles in the human lung. Journal of Aerosol Science and Technology 38, 938–947 (2004)CrossRefGoogle Scholar
  128. 128.
    Longest, P.W., Kleinstreuer, C.: Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways. Journal of Aerosol Science and Technology 39, 124–138 (2005)CrossRefGoogle Scholar
  129. 129.
    Brown, J.S., Zeman, K.L., Bennett, W.D.: Regional deposition of coarse particles and ventilation distribution in patients with cystic fibrosis. Journal of Aerosol Medicine 14, 443–454 (2001)CrossRefGoogle Scholar
  130. 130.
    Kastelik, J.A., Wright, G.A., Aziz, I., Davies, M., Avery, G.R., Paddon, A.J., Howey, S., Morice, A.H.: A widely available method for the assessment of aerosol delivery in cystic fibrosis. Pulmonary Pharmacology and Therapeutics 15, 513–519 (2002)CrossRefGoogle Scholar
  131. 131.
    Kaza, V., Katz, M.F., Cumming, S., Frost, A.E., Safdar, Z.: Correlation of chest radiograph pattern with genotype, age, and gender in adult cystic fibrosis a single center study. Chest 132, 569–574 (2007)CrossRefGoogle Scholar
  132. 132.
    Goldberg, I.S., Lourenco, R.V.: Deposition of aerosols in pulmonary disease. Archives of Internal Medicine 131, 88–91 (1973)CrossRefGoogle Scholar
  133. 133.
    Svartengren, M., Anderson, M., Bylin, G., Philipson, K., Camner, P.: Regional deposition of 3.6-micron particles in subjects with mild to moderately severe asthma. Journal of Aerosol Medicine 3, 197–207 (1991)CrossRefGoogle Scholar
  134. 134.
    Martonen, T., Katz, I., Cress, W.: Aerosol deposition as a function of airway disease: cystic fibrosis. Pharmaceutical research 12, 96–102 (1995)CrossRefGoogle Scholar
  135. 135.
    Segal, R.A., Martonen, T.B., Kim, C.S., Shearer, M.: Computer simulations of particle deposition in the lungs of chronic obstructive pulmonary disease patients. Inhalation Toxicology 14, 705–720 (2002)CrossRefGoogle Scholar
  136. 136.
    Brown, J.S., Bennett, W.D.: Deposition of coarse particles in cystic fibrosis: model predictions versus experimental results. Journal of Aerosol Medicine 17, 239–248 (2004)CrossRefGoogle Scholar
  137. 137.
    Robinson, R.J., Doolittle, R.L., Diflorio, J.N.: Use of asthmatic pulmonary function test data to predict lung deposition. Journal of Aerosol Medicine 20, 141–162 (2007)CrossRefGoogle Scholar
  138. 138.
    Anderson, P.O., Sicker-Walker, R.H., Strominger, D.B., McAlister, W.H., Hill, R.L., Markham, J.: Quantitative assessment of regional ventilation and perfusion in children with cystic fibrosis. Radiology 111, 151–155 (1974)Google Scholar
  139. 139.
    Farkas, A., Balashazy, I., Szocs, K.: Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods. Journal of Aerosol Medicine 19, 329–343 (2006)CrossRefGoogle Scholar
  140. 140.
    Asgharian, B., Price, O.: Airflow distribution in the human lung and its influence on particle deposition. Inhalation Toxicology 18, 795–801 (2006)CrossRefGoogle Scholar
  141. 141.
    Asgharian, B., Price, O.T., Hofmann, W.: Prediction of particle deposition in the human lung using realistic models of lung ventilation. Journal of Aerosol Science 37, 1209–1221 (2006)CrossRefGoogle Scholar
  142. 142.
    Asgharian, B., Price, O., Oberdorster, G.: A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung. Inhalation Toxicology 18, 473–481 (2006)CrossRefGoogle Scholar
  143. 143.
    Goo, J., Kim, C.S.: Theoretical analysis of particle deposition in human lungs considering stochastic variations of airway morphology. Journal of Aerosol Science 34, 585–602 (2003)CrossRefGoogle Scholar
  144. 144.
    Hofmann, W., Asgharian, B., Winkler-Heil, R.: Modeling intersubject variability of particle deposition in human lungs. Journal of Aerosol Science 33, 219–235 (2002)CrossRefGoogle Scholar
  145. 145.
    Farkas, A., Balashazy, I.: Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Computers in Biology and Medicine 38, 508–518 (2008)CrossRefGoogle Scholar
  146. 146.
    Hofmann, W., Pawlak, E., Sturm, R.: Semi-empirical stochastic model of aerosol bolus dispersion in the human lung. Inhalation Toxicology 20, 1059–1073 (2008)CrossRefGoogle Scholar
  147. 147.
    Brand, P., Meyer, T., Haussermann, S., Schulte, M., Scheuch, G., Bernhard, T., Sommerauer, B., Weber, N., Griese, M.: Optimum peripheral drug deposition in patients with cystic fibrosis. Journal of Aerosol Medicine 18, 45–54 (2005)CrossRefGoogle Scholar
  148. 148.
    Brand, P., Friemel, I., Meyer, T., Schulz, H., Heyder, J., Haussinger, K.: Total deposition of therapeutic particles during spontaneous and controlled inhalations. Journal of Pharmaceutical Sciences 89, 724–731 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Laleh Golshahi
    • 1
  • W. H. Finlay
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Alberta, EdmontonAlberta

Personalised recommendations