Mass Transfer Phenomena in Nuclear Waste Packages

  • F. Frizon
  • S. Gin
  • C. Jegou
Part of the Advances in Transport Phenomena book series (ADVTRANS, volume 1)


As part of an integrated management approach to the wasteforms arising from medical, industrial or research activities implementing radioactive materials, several countries throughout the world are considering geological disposal of long-lived intermediate- and high-level waste. An essential prerequisite is to develop a suitable waste disposition route in which waste conditioning is one of the key aspect. Conditioning is not only imposed by scientific necessities, such as the half-lives of the radioactive isotopes concerned and by their activity levels; it is also influenced by the specific approaches and developments in each country, such as the decision to reprocess the spent fuel from pressurized water reactors or to opt instead for direct disposal. Nevertheless, three mineral materials are found at the core of the strategies developed throughout the world: ceramics, comprising the fuel rods themselves, which can be destined for direct disposal with or without prior interim storage; nuclear glasses, used to condition solutions rich in minor actinides, fission products and activation products after fuel reprocessing, i.e. high-level waste; and cement materials, mainly secondary process waste, i.e. low- and intermediate-level waste. These three categories of nuclear waste conditioning materials are examined in this chapter with respect to mass transfer phenomena liable to occur in a deep geological repository. The fundamental mass transfer phenomena involved differ considerably depending on the physical and chemical properties of the materials, on the specific constraints raised by their presence in waste packages, and on the repository operating conditions — especially in a water-saturated geological environment. This section describes the principal transport phenomena involved according to the environmental conditions for each material. This systematic approach highlights the scientific issues associated with each material and identifies their particular features as the seat of mass transfer; each material is a subject of experimental investigation or specific modeling activities.


Cement Paste Calcium Silicate Hydrate Spend Fuel Waste Package Mass Transfer Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailly, H., Ménessier, D., Prunier, C.: Le combustible nucléaire des réacteurs à eau sous pression et des réacteurs à neutrons rapides. Eyrolles edn. (1996)Google Scholar
  2. 2.
    Poinssot, C., Toulhoat, P., Grouiller, J.P., Pavageau, J., Piron, J.P., Pelletier, M., Dehaudt, P., Cappelaere, C., Limon, R., Desgranges, L., Jégou, C., Corbel, C., Maillard, S., Faure, M.H., Cicariello, J.C., Masson, M.: Synthesis on the long term behaviour of the spent nuclear fuel. CEA-R-5958 (E), vol. I, II (2001)Google Scholar
  3. 3.
    Ferry, C., Poinssot, C., Cappelaere, C., Desgranges, L., Garcia, P., Jégou, C., Lovera, P., Marimbeau, P., Piron, J.P., Poulesquen, A., Roudil, D., Broudic, V., Gras, J.M., Bouffioux, P.: Synthesis on the spent fuel long term evolution, CEA-R-6084 (2004)Google Scholar
  4. 4.
    Ferry, C., Poinssot, C., Cappelaere, C., Desgranges, L., Jégou, C., Miserque, F., Piron, J.P., Roudil, D., Gras, J.M.: Major outcomes of the French research on the spent fuel long-term evolution in interim dry storage and deep geological disposal. Journal of Nuclear Materials 352, 246–253 (2006)Google Scholar
  5. 5.
    Poinssot, C., Ferry, C., Kelm, M., Grambow, B., Martinez-Esparza, A., Johnson, L., Andriambololona, Z., Bruno, J., Cachoir, C., Cavedon, J.M., Christensen, H., Corbel, C., Jégou, C., Lemmens, K., Loida, A., Lovera, P., Miserque, F., De Pablo, J., Poulesquen, A., Quinones, J., Rondinella, V., Spahiu, K., Wegen, D.: Final report of the European project spent fuel stability under repository conditions. Contract N°FIKW-CT-2001-00192 SFS (2005)Google Scholar
  6. 6.
    Elliot, M.N., Grover, J.R., Hardwick, W.H.: Fixation of radioactive waste in glass. Part II, The experimental evaluation of phosphate and borosilicate glasses. Treatment and Storage of High Level Radioactive Wastes, pp. 1–15. International Atomic Energy Agency (1962)Google Scholar
  7. 7.
    Bocola, W., Donato, A., Sgalambro, G.: Survey of the present state of study on the solidification of fission product solutions in Italy. OECD Paris (1973)Google Scholar
  8. 8.
    Blazewitz, A.G., et al.: The high level solidification demonstration program, OCDE Paris (1973)Google Scholar
  9. 9.
    Grover, J.R.: Glasses for the fixation of high level radioactive wastes. OECD Paris (1973)Google Scholar
  10. 10.
    Angeli, F.: Structure et réactivité aqueuse des verres silicatés. Apport de la résonance magnétique nucléaire haute-résolution. PhD Thesis, Université Denis Diderot, France (2000)Google Scholar
  11. 11.
    Delaye, J.M., Ghaleb, D.: Molecular dynamic simulation of a nuclear waste glass matrix. Materials Science and Engineering B 37, 232–236 (1996)Google Scholar
  12. 12.
    Delaye, J.M., Cormier, L., Ghaleb, D., Calas, G.: Investigation of multicomponent silicate glasses by coupling WAXS and molecular dynamics. Journal of Non-Crystalline Solids, 293–295 (2001)Google Scholar
  13. 13.
    Delaye, J.M., Louis Achile, V., Ghaleb, D.: Modeling oxide glasses with Born-Mayer-Huggins potentials, Effect of composition structural changes. Journal of Non-Crystalline Solids 210, 232–242 (1997)Google Scholar
  14. 14.
    Galoisy, L., et al.: Local structure of simplified waste glass, complementarity of XAS and MD calculations. In: McKinley, I.G., McCombie, C. (eds.) Scientific Basis for Nuclear Waste Management XXI, pp. 133–139. Mater. Res. Soc. (1998)Google Scholar
  15. 15.
    Galoisy, L., Pelegrin, E., Arrio, M.A., Ildefonse, P., Calas, G., Ghaleb, D., Fillet, C., Pacaud, F.: Evidence for 6-coordinated zirconium in inactive nuclear waste glasses. Journal of the American Ceramic Society 82, 2219–2224 (1999)Google Scholar
  16. 16.
    Cormier, G., Ghaleb, D., Delaye, J.M., Calas, G.: Competition for charge compensation in borosilicate glasses, a study by Wide Angle X ray Scattering and Molecular Dynamics calculation. Physical Review B 61, 1495–1499 (2000)Google Scholar
  17. 17.
    Angeli, F., Delaye, J.M., Charpentier, T., Petit, J.C., Ghaleb, D., Faucon, P.: Influence of glass chemical composition on the Na-O bond distance: a 23Na 3Q-MAS NMR and molecular dynamics study. Journal of Non Crystalline Solids 276, 132–144 (2000)Google Scholar
  18. 18.
    Cabaret, D., Le Grand, M., Ramos, A., Flank, A.M., Galoisy, L., Calas, G., Ghaleb, D.: Medium range structure of borosilicate glasses from Si K-edge XANES, a combined approach based on multiple scattering and molecular dynamics calculations. Journal of Non-Crystalline Solids 289(1-3), 1–8 (2001)Google Scholar
  19. 19.
    Cormier, L., Galoisy, L., Ghaleb, D., Calas, G.: Short-range and medium-range structural order around cations in glasses, a multidisciplinary approach. Comptes-rendus de l’Académie des Sciences de Paris - série IV Physique Astrophysique 2, 249–262 (2001)Google Scholar
  20. 20.
    Delaye, J.M.: Modeling of multicomponent glasses, A review. Current Opinion in Solid State and Materials Science 5, 451–454 (2001)Google Scholar
  21. 21.
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford (1997)Google Scholar
  22. 22.
    Hadley, D.W., Dolch, W.L., Diamond, S.: On the occurrence of hollow-shell hydration grains in hydrated cement paste. Cement and Concrete Research 30, 1–6 (2000)Google Scholar
  23. 23.
    Mehta, P.K.: Concrete Structure Properties and Materials. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  24. 24.
    Feldman, R.F., Sereda, P.J.: A new model for hydrated Portland cement and its practical implications. Engineering Journal of Canada 53, 59–83 (1970)Google Scholar
  25. 25.
    Jennings, H.M., Tennis, P.D.: Model for the developing microstructure in Portland Cement pastes. Journal of the American Ceramic Society 77, 3161–3172 (1994); correction 78, 2575 (1995)Google Scholar
  26. 26.
    Baroghel-Bouny, V.: Caractérisation des pâtes de ciment et des bétons: méthodes, analyses, interprétations. Presses de l’Ecole Nationale des Ponts et Chaussées (1994)Google Scholar
  27. 27.
    Jennings, H.M.: A model for the microstructure of calcium silicate hydrate in cement paste. Cement and Concrete Research 30, 101–116 (2000)Google Scholar
  28. 28.
    Richardson, I.G.: The nature of C-S-H in hardened cements. Cement and Concrete Research 29, 1131–1147 (1999)Google Scholar
  29. 29.
    Baron, J., Ollivier, J.P.: La durabilité des bétons. Presses de l’École Nationale des Ponts et Chaussées, Paris, France (1992)Google Scholar
  30. 30.
    Roudil, D., Trocellier, P., Deschanels, X., Jégou, C., Peuget, S., Bart, J.M.: Helium thermal diffusion in a uranium dioxide matrix. Journal of Nuclear Materials 325, 148–158 (2004)Google Scholar
  31. 31.
    Guilbert, S., et al.: He migration in implanted UO2 sintered disks. Journal of Nuclear Materials 327, 88–96 (2004)Google Scholar
  32. 32.
    Martin, G., et al.: A NRA study of temperature and heavy ion irradiation effects on helium migration in sintered uranium dioxide. Journal of Nuclear Materials 357, 198–205 (2006)Google Scholar
  33. 33.
    Martin, G., et al.: A quantitative μ-NRA study of helium intergranular and volume diffusion in sintered UO2. Nuclear Instrumentations and Methods B 249, 509–512 (2006)Google Scholar
  34. 34.
    Martin, G.: Étude et modélisation de la diffusion sous irradiation de l’hélium dans le dioxyde d’uranium. PhD Thesis, Orléans University (2007)Google Scholar
  35. 35.
    Gosset, D., Trocellier, P., Serruys, Y.: Determination of the helium diffusion in nuclear waste storage ceramics by a nuclear reaction analysis method. Journal of Nuclear Materials 303, 115–124 (2002)Google Scholar
  36. 36.
    Mayer, M.: SIMNRA user’s guide, Technical report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany (1997)Google Scholar
  37. 37.
    Garcia, P., et al.: Étude par réactions nucléaires de la mobilité de l’hélium dans le dioxyde d’uranium, CEA Technical Report SESC/LLCC 08 03 (2008)Google Scholar
  38. 38.
    Sauvage, T., et al.: Profile measurement of helium implanted in UO2 sintered pellets by using the 3He(d, α)1H nuclear reaction analysis technique. Journal of Nuclear Materials 327, 159–164 (2004)Google Scholar
  39. 39.
    Rufeh, F., Olander, D.R., Pigford, T.H.: The solubility of helium in uranium dioxide. Nuclear Science And Engineering 23, 335–338 (1965)Google Scholar
  40. 40.
    Van Veen, A., Fedorov, A.V., Westerduin, K.T.: Thermal desorption study on helium implanted UO2, Report IRI-DM-2001-004 (2001)Google Scholar
  41. 41.
    Pipon, Y., et al.: Conférence ATALANTE (France), 04-01 (2008)Google Scholar
  42. 42.
    Ronchi, C., Hiernaut, J.P.: Helium diffusion in uranium and plutonium oxides ». Journal of Nuclear Materials 325, 1–12 (2004)Google Scholar
  43. 43.
    Matzke, H.: Radiation enhanced diffusion in UO2 and (U, Pu)O2. Radiation Effects 75, 317 (1983)Google Scholar
  44. 44.
    Ferry, C., et al.: Enhanced diffusion under alpha self-irradiation in spent nuclear fuel, Theoretical approaches. Journal of Nuclear Materials 346, 48–55 (2005)Google Scholar
  45. 45.
    Lovera, P., et al.: Synthesis report on the relevant diffusion coefficients of fission products and helium in spent nuclear fuels, CEA-Report CEA-R-6039 (2003)Google Scholar
  46. 46.
    Mainguy, M.: Modèles de diffusion non linéaires en milieux poreux. Application à la dissolution et au séchage des matériaux cimentaires. PhD Thesis, École Nationale des Ponts et Chaussées, Paris, France (1999)Google Scholar
  47. 47.
    Groves, G.W., Rodway, D.I., Richardson, I.G.: The carbonation of hardened cement pastes. Advances in Cement Research 3, 117–125 (1990)Google Scholar
  48. 48.
    Groves, G.W., Brough, A., Richardson, I.G., Donson, C.M.: Progressive changes in the structure of hardened C3S cement pastes due to carbonation. Journal of the American Ceramic Society 11, 2891–2896 (1991)Google Scholar
  49. 49.
    Houst, Y.F., Wittmann, F.H.: Influence of porosity and water content on the diffusivity of CO2 and O2 though hydrated cement paste. Cement and Concrete Research 24, 1165–1176 (1994)Google Scholar
  50. 50.
    Ngala, V.T., Page, C.L.: Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cement and Concrete Research 27, 995–1007 (1997)Google Scholar
  51. 51.
    Thierry, M.: Modélisation de la carbonatation atmosphérique des matériaux cimentaires – Prise en compte des effets cinétiques et des modifications microstructurales et hydriques. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris, France (2005)Google Scholar
  52. 52.
    Buil, M., Ollivier, J.P.: Conception des bétons, la structure poreuse. In: Baron, J., Ollivier, J.P. (eds.) La Durabilité des Bétons. Presses de l’École Nationale des Ponts et Chausses (1992)Google Scholar
  53. 53.
    Mindess, S., Young, J.F., Darwin, D.: Concrete, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  54. 54.
    Winslow, D.N., Cohen, M.D., Bentz, D.P., Snyder, K.A., Garboczi, E.J.: Percolation and pore structure in mortars and concrete. Cement and Concrete Research 24, 25–37 (1994)Google Scholar
  55. 55.
    Liu, Z., Winslow, D.: Sub-distributions of pore size, a new approach to correlate pore structure in mortars and concrete. Cement and Concrete Research 25, 769–778 (1995)Google Scholar
  56. 56.
    Mason, E.A., Malinauskaus, A.P.: Gas Transport in Porous Media, the Dusty-Gas Model. Elsevier, Amsterdam (1983)Google Scholar
  57. 57.
    Frizon, F., Gallé, C.: Experimental investigations of diffusive and convective transport of inert gas through cement pastes. Journal of Porous Media 12, 221–237 (2009)Google Scholar
  58. 58.
    Atkinson, A., Nickerson, A.K.: The diffusion of ions through water-saturated cement. Journal of Materials Science 19, 3068–3078 (1984)Google Scholar
  59. 59.
    Gallé, C., Sercombe, J.: Permeability and pore structure evolution of silico-calcareous and hematite high-strength concretes submitted to high temperatures. Materials and Structures 34, 619–628 (2001)Google Scholar
  60. 60.
    Gallé, C., Peycelon, H., Le Bescop, P.: Effect of an accelerated chemical degradation on water permeability and pore structure of cement-based materials. Advances in Cement Research 16, 105–114 (2004)Google Scholar
  61. 61.
    Quenard, D., Carcasses, M.: Les résultats es essais croisés AFREM “perméabilité”. In: Compte rendu des Journées Techniques AFPC-AFREM, Durabilité des bétons, Toulouse, France, Décember 11-12, AFPC-AFREM (1997)Google Scholar
  62. 62.
    Kropp, J., Hilsdorf, H.K.: Performance criteria for concrete durability. RILEM report 12, E. & FN Spon (1995)Google Scholar
  63. 63.
    Rondinella, V.V., Matzke, H., Cobos, J., Wiss, T.: Radiochim. Acta 88, 527–531 (2000)Google Scholar
  64. 64.
    Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J.F., Barthe, M.F., Garrido, F., Gosset, D.: Journal of Nuclear Materials 288, 11–19 (2001)Google Scholar
  65. 65.
    Corbel, C., Sattonnay, G., Lucchini, J.F., Ardois, C., Barthe, M.F., Huet, F., Dehaudt, P., Hickel, B., Jégou, C.: Increase of the uranium release at an UO2/H2O interface under He2 +  ion bean irradiation. Nuclear Instruments And Methods in Physics Research B 179, 225 (2001)Google Scholar
  66. 66.
    Cobos, J., Havela, L., Rondinella, V.V., De Pablo, J., Gouder, T., Glatz, J.P., Carbol, P., Matzke, H.J.: Corrosion and dissolution studies of UO2 containing a-emitters. Radiochimica Acta 90, 597–602 (2002)Google Scholar
  67. 67.
    Stroes-Gascoyne, S., King, F., Betteridge, J.S., Garisto, F.: Radiochim. Acta 90, 603–609 (2002)Google Scholar
  68. 68.
    Jégou, C., Muzeau, B., Broudic, V., Poulesquen, A., Roudil, D., Jorion, F., Corbel, C.: Effect of alpha irradiation on UO2 surface reactivity in aqueous media. Radiochimica Acta 93, 1–8 (2005)Google Scholar
  69. 69.
    Stroes-Gascoyne, S., Betteridge, J.S.: Mat. Res. Soc. Symp. Proc. 824, 175–181 (2004)Google Scholar
  70. 70.
    Muzeau, B., Jégou, C., Delaunay, F., Broudic, V., Brevet, A., Catalette, H., Simoni, E.: Radiolytic oxidation of UO2 pellets doped with alpha-emitters (238/239Pu). Journal of Alloys and Compounds 467, 578–589 (2009)Google Scholar
  71. 71.
    Shoesmith, D.W.: Fuel corrosion processes under waste disposal conditions, Review. Journal of Nuclear Materials 282, 1 (2000)Google Scholar
  72. 72.
    Christensen, H., Sunder, S.: Current state of knowledge of water radiolysis effects on spent nuclear fuel corrosion. Nuclear Technology 131, 102 (2000)Google Scholar
  73. 73.
    Johnson, L.H., et al.: Spent fuel evolution under disposal conditions, Synthesis of results from the EU spent fuel stability (SFS) project, TR-04-09 Nagra report (2005)Google Scholar
  74. 74.
    Sunder, S., Schoesmith, D.W., Miller, N.H.: Journal of Nuclear Materials 244, 66–74 (1997)Google Scholar
  75. 75.
    Lundström, T.: PhD thesis, Linköpings Universitet, Sweden (2003)Google Scholar
  76. 76.
    Poulesquen, A., Jégou, C.: Influence of Alpha Radiolysis on Water on UO2 Matrix Alteration, Chemical/Transport Model. Journal of Nuclear Technology 160, 337–345 (2007)Google Scholar
  77. 77.
    Christensen, H.: Calculation simulating spent fuel leaching experiments. Nuclear Technology 124, 165 (1998)Google Scholar
  78. 78.
    Kelm, M., Bohnert, E.: A kinetic model for the radiolysis of chloride brine, its sensitivity against model parameters and a comparison with experiments, FZKA 6977 report (2004)Google Scholar
  79. 79.
    Kirkegaard, P., Bjergbakke, E.: CHEMSIMUL, A simulator for chemical kinetics, Risø National Laboratory (2002)Google Scholar
  80. 80.
    Christensen, H., Sunder, S.: An evaluation of water layer thickness effective in the oxidation of UO2 fuel due to radiolysis of water. Journal of Nuclear Materials 238, 70 (1996)Google Scholar
  81. 81.
    Vladimirova, M.V.: Recent advances in radiation chemistry of actinides. Radiochemistry 40, 395 (1998)Google Scholar
  82. 82.
    Christensen, H., Sunder, S., Shoesmith, D.W.: Oxidation of nuclear fuel (UO2 ) by the products of water radiolysis, development of a kinetic model. J. Alloys. Comp. 213/214, 93–99 (1994)Google Scholar
  83. 83.
    Mendes, E.: Comportement des interfaces UO2/H2O de haute pureté sous faisceau d’ions He2 +  en milieu désaéré. PhD thesis, Université de Paris XI Orsay, France (2005)Google Scholar
  84. 84.
    Spahiu, K., Carbol, P., Cobos, J., Glatz, J.P., Ronchi, C., Rondinella, V.V., Wegen, D., Wiss, T., Loida, A., Metz, V., Kienzler, B., Grambow, B., Quinones, J., Martinez Esparza Valiente, A.: The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s), high burn-up spent fuel and MOX fuel, TR-05-09 SKB report (2005)Google Scholar
  85. 85.
    Pastina, B., LaVerne, J.A.: Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. Journal of Physical Chmistry A 105, 9316–9322 (2001)Google Scholar
  86. 86.
    Conradt, R.: Chemical durability of oxide glasses in aqueous solution, a review. Journal of American Ceramic Society 91, 728–735 (2008)Google Scholar
  87. 87.
    Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L., Santarini, G.: SON68 nuclear glass dissolution kinetics, Current state of knowledge and basis of the new GRAAL model. Journal of Nuclear Materials 380, 8–21 (2008)Google Scholar
  88. 88.
    Rebiscoul, D.: Étude de la pérennité des gels d’altération de verres nucléaires, PhD thesis, Université Montpellier II, France (2004)Google Scholar
  89. 89.
    Rana, M.A., Douglas, R.W.: The reaction between glass and water. Part I. Experimental methods and observations. Physics and Chemistry of Glasses 2, 179–195 (1961)Google Scholar
  90. 90.
    Rana, M.A., Douglas, R.W.: The reaction between glass and water. Part II. Discussion of the results. Physics and Chemistry of Glasses 2, 196–205 (1961)Google Scholar
  91. 91.
    Doremus, R.H.: Interdiffusion of hydrogen and alkali ions in a glass surface. Journal of Non-Crystalline Solids 19, 137–144 (1975)Google Scholar
  92. 92.
    White, A.F., Claasen, H.C.: Kinetic model for the short-term dissolution of a rhyolitic glass. Chemical Geology 28, 91–109 (1980)Google Scholar
  93. 93.
    Smets, R.M.J., Lommen, T.P.A.: The leaching of sodium aluminosilicate glasses studied by secondary ion mass spectrometry. Physics and Chemistry of Glasses 23, 83–87 (1982)Google Scholar
  94. 94.
    Dran, J.C., Petit, J.C., Trotignon, L., Paccagnella, A., Della Mea, G.: Hydration mechanisms of silicate glasses, discussion of the respective role of ion exchange and water permeation. Materials Research Society Symposia Proceedings 127, 25–32 (1989)Google Scholar
  95. 95.
    Geneste, G., Bouyer, F., Gin, S.: Hydrogen–sodium interdiffusion in borosilicate glasses investigated from first principles. Journal of Non-Crystalline Solids 352, 3147–3152 (2006)Google Scholar
  96. 96.
    Lanford, W.A., Davis, K., Lamarche, P., Laursen, T.: Hydration of soda-lime glass. Journal of Non-Crystalline Solids 33, 249–266 (1979)Google Scholar
  97. 97.
    Houser, C.A., Herman, J.S., Tsong, I.S.T., White, W.B., Lanford, W.A.: Sodium-hydrogen interdiffusion in sodium silicate glasses. Journal of Non-Crystalline Solids 41, 89–98 (1980)Google Scholar
  98. 98.
    Tsong, I.S.T., Houser, C.A., White, W.B.: Evidence for interdiffusion of hydronium and alkali ions in leached glasses. Applied Physics Letters 39, 669–670 (1981)Google Scholar
  99. 99.
    Ferrand, K., Abdelouas, A., Grambow, B.: Water diffusion in the simulated French nuclear waste glass SON 68 contacting silica rich solutions, Experimental and modeling. Journal of Nuclear Materials 355, 54–67 (2006)Google Scholar
  100. 100.
    Bunker, B.C.: Waste glass leaching, chemistry and kinetics. Materials Research Society Symposia Proceedings 84, 493–506 (1987)Google Scholar
  101. 101.
    Chave, T., Frugier, P., Ayral, A., Gin, S.: Solid state diffusion during nuclear glass residual alteration in solution. Journal of Nuclear Materials 362, 466–473 (2007)Google Scholar
  102. 102.
    Casey, W.: On the Relative Dissolution Rates of Some Oxide and Orthosilicates Minerals. Journal of Colloid and Interface Science 146, 586–589 (1991)Google Scholar
  103. 103.
    Oelkers, E.H.: General kinetic description of multioxide silicate mineral and glass dissolution. Geochimica et Cosmochimica Acta 65, 3703–3719 (2001)Google Scholar
  104. 104.
    Guy, C., Schott, J.: Multisite surface reaction versus transport control during the hydrolysis of a complex oxide. Chemical Geology 78, 181–204 (1989)Google Scholar
  105. 105.
    White, E., Brantley, S.: Chemical weathering rates of silicate minerals. Reviews in Mineralogy. 31. Mineralogical Society of America (1995)Google Scholar
  106. 106.
    Criscenti, L.J., Kubicki, J.D., Brantley, S.L.: Silicate Glass and Mineral Dissolution, Calculated Reaction Paths and Activation Energies for Hydrolysis of a Q3 Si by H3O +  Using Ab Initio Methods. Journal of Physical Chemistry A 110, 198–206 (2006)Google Scholar
  107. 107.
    Icenhower, J.P., McGrail, B.P., Shaw, W.J., Pierce, E.M., Nachimuthu, P., Shuh, D.K., Rodriguez, E.A., Steele, J.L.: Experimentally determined dissolution kinetics of Na-rich borosilicate glass at far from equilibrium conditions, Implications for Transition State Theory. Geochimica et Cosmochimica Acta 72, 2767–2788 (2008)Google Scholar
  108. 108.
    Cailleteau, C., Angeli, F., Devreux, F., Gin, S., Jestin, J., Jollivet, P., Spalla, O.: Insight into silicate-glass corrosion mechanisms. Nature Materials (in press, 2008)Google Scholar
  109. 109.
    Advocat, T., Crovisier, J.L., Vernaz, E., Ehret, G., Charpentier, H.: Hydrolysis of R7T7 nuclear waste glass in dilute media: mechanisms and rate as a function of pH. Materials Research Society Symposia Proceedings 212, 57–64 (1991)Google Scholar
  110. 110.
    Valle, N.: Traçage isotopique (29Si et 18O) des mécanismes de l’altération du verre de confinement des déchets nucléaires, SON 68. PhD thesis, Université Poincaré, France (2001)Google Scholar
  111. 111.
    Le Gal, X.: Étude de l’altération de verres volcaniques du Vatnajökull (Islande). Mécanismes et bilans à basse température. PhD thesis, Université Louis Pasteur, France (1999)Google Scholar
  112. 112.
    Bunker, B.C., Tallant, D.R., Headley, T.J., Turner, G.L., Kirpatrick, R.J.: The structure of leached sodium borosilicate glass. Physics and Chemistry of Glasses 29, 106–121 (1988)Google Scholar
  113. 113.
    Angeli, F., Charpentier, T., Gin, S., Petit, J.C.: O-17 3Q-MAS NMR characterization of a sodium aluminoborosilicate glass and its alteration gel. Chemical Physics Letters 341, 23–28 (2001)Google Scholar
  114. 114.
    Ledieu, A., Devreux, F., Barboux, P.: Leaching of borosilicate glasses. I. Experiments. Journal of Non-Crystalline of Solids 343, 3–12 (2004)Google Scholar
  115. 115.
    Ledieu, A., Devreux, F., Barboux, P., Minet, Y.: Contribution of Monte Carlo modeling to understanding the alteration of nuclear glasses by water. Nuclear Science and Engineering 185, 285–300 (2006)Google Scholar
  116. 116.
    Spalla, O., Barboux, P., Sicard, L., Lyonnard, S., Bley, F.: Influence of insoluble elements on the nanostructure of water altered glasses. Journal of Non-Crystalline Solids 347, 56–68 (2004)Google Scholar
  117. 117.
    Cailleteau, C., Weigel, W., Ledieu, A., Barboux, P., Devreux, F.: On the effect of glass composition in the dissolution of glasses by water. Journal of Non-Crystalline Solids 354, 117–123 (2008)Google Scholar
  118. 118.
    Grambow, D.M., Strachan: Materials Research Society 112, 713–724 (1998)Google Scholar
  119. 119.
    Vernaz, E.: Estimating the lifetime of R7T7 glass in various media. C.R.Physique 3, 813–825 (2002)Google Scholar
  120. 120.
    Van Iseghem, A.M., Gin, S., Deneele, D., Grambow, B., McGrail, P., Strachan, D., Wicks, G.: A Critical Evaluation of the Dissolution Mechanisms of High-Level Waste Glasses in Conditions of Relevance for Geological Disposal (GLAMOR). In: SCK.CEN, CEA, Subatech, PNNL, SRNL (eds.). EUR 23097, 23097, pp. 1–164 (2007)Google Scholar
  121. 121.
    Gin, S., Jégou, C., Frugier, P., Minet, Y.: Theoretical consideration on the application of Aagaard-Helgelson rate law to dissolution of silicate minerals and glasses. Chemical Geology 255, 14–24 (2008)Google Scholar
  122. 122.
    Frugier, P., Gin, S., Lartigue, J.L., Deloule, E.: Mat. Res. Soc. Symp. Proc., 305–312 (2005)Google Scholar
  123. 123.
    Chave, T.: Étude des mécanismes d’altération par l’eau du verre R7T7 en milieu confiné. Compréhension et modélisation de la cinétique résiduelle, PhD thesis, Université de Montpellier II (2007)Google Scholar
  124. 124.
    Curti, E., Crovisier, J.L., Morvan, G., Karpoff, A.M.: Long-term corrosion of two nuclear waste reference glasses (MW and SON68), A kinetic and mineral alteration study. Applied Geochemistry 21, 1152–1168 (2006)Google Scholar
  125. 125.
    Cundy, C.S., Cox, P.A.: The hydrothermal synthesis of zeolites, Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials 82, 1–78 (2005)Google Scholar
  126. 126.
    Gin, S., Mestre, J.P., Couillard, M.: SON 68 nuclear glass alteration kinetics between pH 7 and pH 11. 5. Journal of Nuclear Materials 295, 83–96 (2001)Google Scholar
  127. 127.
    Ribet, I., Gin, S.: Role of neoformed phases on the mechanisms controlling the resumption of SON68 glass alteration in alkaline media. Journal of Nuclear Materials 324, 152–164 (2004)Google Scholar
  128. 128.
    Gislason, S.R., Eugster, H.P.: Meteoritic water-basalt interactions. I, A laboratory study. Geochimica et Cosmochimica Acta 51, 2827–2840 (1987)Google Scholar
  129. 129.
    Jercinovic, M.J., Keil, K., Smith, M.R., Schmitt, R.A.: Alteration of basaltic glasses from north-central British Columbia, Canada. Geochimica Cosmochimica Acta 54, 2679–2696 (1990)Google Scholar
  130. 130.
    Verney-Carron, A., Gin, S., Libourel, G.: Use of natural and archeological analogs to validate long term behaviour of HLW glass in geological disposal conditions. Water Rock Interaction 12, 659–662 (2007)Google Scholar
  131. 131.
    Bunker, B.C.: Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids 179, 300–308 (1994)Google Scholar
  132. 132.
    Bakos, T., Rashkeev, S.N., Pantelides, S.T.: Reactions and diffusion of water and oxygen molecules in amorphous SiO2. Physical Review Letters 88 (2002)Google Scholar
  133. 133.
    Hellmann, R.: The albite-water system, Part IV. Diffusion modeling of leached and hydrogen-enriched layers. Geochimica et Cosmochimica Acta 61, 1595–1611 (1997)Google Scholar
  134. 134.
    Crank, J.: The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford (1975)Google Scholar
  135. 135.
    Boksay, Z., Bouquet, G., Dobos, S.: Diffusion processes in the surface layer of glass. Physics and Chemistry of Glasses 8, 140–144 (1967)Google Scholar
  136. 136.
    Boksay, Z., Bouquet, G., Dobos, S.: The kinetics of the formation of leached layers on glass surfaces. Physics and Chemistry of Glasses 9, 69–71 (1968)Google Scholar
  137. 137.
    Bunker, B.C.: Waste glass leaching, chemistry and kinetics. Materials research Society Symposia Proceedings 84, 493–506 (1987)Google Scholar
  138. 138.
    Grambow, B., Müller, R.: First-order dissolution rate law and the role of surface layers in glass performance assessment. Journal of Nuclear Materials 298, 112–124 (2001)Google Scholar
  139. 139.
    McGrail, B.P., Icenhower, J.P., Darab, J.G., Shuh, D.K., Baer, D.R., Shutthanandan, V., Thevuthasan, S., Engelhard, M.H., Steele, J.L., Rodriguez, E.A., Liu, P., Ivanov, K.E., Booth, C.H., Nachimuthu, P.: Ion-Exchange Processes and Mechanisms in Glasses. U.S. DOE report, Pacific Northwest Laboratory (2001)Google Scholar
  140. 140.
    Sterpenich, J., Libourel, G.: Water diffusion in silicate glasses under natural weathering conditions, evidence from buried medieval stained glasses. Journal of Non-Crystalline Solids 352, 5446–5451 (2006)Google Scholar
  141. 141.
    Verney-Carron, A.: Étude d’analogues archéologiques pour la validation des modèles de comportement à long terme des verres nucléaires. PhD thesis, Université Poincaré, France (2008)Google Scholar
  142. 142.
    Boksay, Z., Varga, M., Wikby, A.: Surface conductivity of leached glass. Journal of Non-Crystalline Solids 17, 349–358 (1975)Google Scholar
  143. 143.
    Smit, W., Stein, H.N.: Interdiffusion of hydrogen and alkali ions in glass surfaces. Journal of Non-Crystalline Solids 34, 357–370 (1979)Google Scholar
  144. 144.
    McGrail, B.P., Kumar, A., Day, D.E.: Sodium Diffusion and Leaching of Simulated Nuclear Waste Glass. Journal of the American Ceramic Society 67, 463–467 (1984)Google Scholar
  145. 145.
    Friedman, I., Smith, R.L., Long, W.D.: Hydration of natural glass and formation of perlite. Geological Society of America Bulletin 77, 323–327 (1966)Google Scholar
  146. 146.
    McGrail, B.P., Icenhower, J.P., Shuh, D.K., Liu, P., Darab, J.G., Baer, D.R., Thevuthasen, S., Shutthanandan, V., Engelhard, M.H., Booth, C.H., Nachimuthu, P.: The structure of Na2O-Al2O3-SiO2 glass, impact on sodium ion exchange in H2O and D2O. Journal of Non-Crystalline Solids 296, 10–26 (2001)Google Scholar
  147. 147.
    Friedman, I., Long, W.: Hydration rate of obsidian. Science 191, 347–352 (1976)Google Scholar
  148. 148.
    Petit, J.C., Della Mea, G., Dran, J.C., Magonthier, M.C., Mando, P.A., Paccagnella, A.: Hydrated-layer formation during dissolution of complex silicate glasses and minerals. Geochimica et Cosmochimica Acta 54, 1941–1955 (1990)Google Scholar
  149. 149.
    Roggendorf, H.: Corrosion of the borosilicate glass R7T7 in a concentrated NaCl-brine – Experimental data and surface characterization. In: International Symposium on Ceramics in Nuclear and Hazardous Waste Management Proceedings, pp. 675–684 (1991)Google Scholar
  150. 150.
    Stillings, L.L., Brantley, S.L., Machesky, M.L.: Proton adsorption at an adularia feldspar surface. Geochimica et Cosmochimica Acta 59, 1473–1482 (1995)Google Scholar
  151. 151.
    McGrail, B.P., Pederson, L.R., Petersen, D.A.: The influence of surface potential and pH on the release of sodium from Na2O.3SiO2 glass. Physics and Chemistry of Glasses 27, 59–64 (1986)Google Scholar
  152. 152.
    Pederson, L.R., McGrail, B.P., McVay, G.L., Petersen-Villalobos, D.A., Settles, N.S.: Kinetics of alkali silicate and aluminosilicate glass reactions in alkali chloride solutions, influence of surface charge. Physics and Chemistry of Glasses 34, 140–148 (1993)Google Scholar
  153. 153.
    Crovisier, J.L.: Dissolution du verre basaltiques dans l’eau de mer et dans l’eau douce. Essai de modélisation. PhD thesis, Université Louis Pasteur, France (1989)Google Scholar
  154. 154.
    Crovisier, J.L., Atassi, H., Daux, V., Eberhart, J.P.: Hydrolyse d’un verre basaltique tholéiitique à 60°C. Dissolution sélective puis congruente par élévation du pH. Comptes-Rendus de l’Académie des Sciences de Paris 310, 941–946 (1990)Google Scholar
  155. 155.
    Techer, I.: Apports des analogues naturels vitreux à la validation des codes de prédiction du comportement à long terme des verres nucléaires. PhD thesis, Université Montpellier II, France (1999)Google Scholar
  156. 156.
    Grambow, B.: A general rate equation for nuclear waste glass corrosion. Materials Research Society Symposia Proceedings 44, 15–27 (1985)Google Scholar
  157. 157.
    Advocat, T.: Les mécanismes de corrosion en phase aqueuse du verre nucléaire R7T7. Approche expérimentale. Essai de modélisation thermodynamique et cinétique. PhD thesis, Université Louis Pasteur, France (1991)Google Scholar
  158. 158.
    Daux, V., Guy, C., Advocat, T., Crovisier, J.L., Stille, P.: Kinetic aspects of basaltic glass dissolution at 90°C, role of aqueous silicon and aluminum. Chemical Geology 142, 109–126 (1997)Google Scholar
  159. 159.
    Techer, I., Advocat, T., Lancelot, J., Liotard, J.M.: Chemical Geology, Dissolution kinetics of basaltic glasses, control by solution chemistry and protective effect of the alteration film. Chemical Geology 176, 235–263 (2001)Google Scholar
  160. 160.
    Jégou, C.: Mise en évidence expérimentale des mécanismes limitant l’altération du verre R7T7 en milieu aqueux. Critique et proposition d’évolution du formalisme cinétique. PhD thesis, Université de Montpellier II, France (1998)Google Scholar
  161. 161.
    Linard, Y., Yamashita, I., Atake, T., Rogez, J., Richet, P.: Thermochemistry of nuclear waste glasses, an experimental determination. Journal of Non-Crystalline Solids 286, 200–209 (2001)Google Scholar
  162. 162.
    Linard, Y., Advocat, T., Jégou, C., Richet, P.: Thermochemistry of nuclear waste glasses, application to weathering studies. Journal of Non-Crystalline Solids 289, 135–143 (2001)Google Scholar
  163. 163.
    Gin, S.: Protective Effect of the Alteration Gel, A Key Mechanism in the Long-Term Behavior of Nuclear Waste Glass. Materials Research Society Symposia Proceedings 663, 207–215 (2001)Google Scholar
  164. 164.
    Chick, L.A., Pederson, L.R.: The relationship between reaction layer thickness and leach rate for nuclear waste glasses. In: Mc Vay, G.L. (ed.) Mat. Res. Soc. Symp. Proc., vol. 26, pp. 635–642 (1984)Google Scholar
  165. 165.
    Deruelle, O.: Etude in-situ de la couche d’altération de verres, PhD thesis, Université Pierre et Marie Curie, France (1997)Google Scholar
  166. 166.
    Devreux, F., Ledieu, A., Barboux, P., Minet, Y.: Leaching of borosilicate glasses. II. Model and Monte Carlo simulations. Journal of Non-Crystalline Solids 343, 13–25 (2004)Google Scholar
  167. 167.
    Ribet, I., Gin, S., Vernaz, E., Do Quang, R.: Long-term behavior of nuclear glass, the r(t) operational model. In: GLOBAL 2001, Paris, pp. 1–9 (2001)Google Scholar
  168. 168.
    Ribet, I., Gin, S., Godon, N., Jollivet, P., Minet, Y., Grambow, B., Abdelouas, A., Ferrand, K., Lemmens, K., Aertsens, M., Pirlet, V., Jacques, D., Crovisier, J.L., Clément, A., Aouri, M., Aouad, G., Fritz, B., Arth, A., Morvan, G., Munier, I., Del Nero, M., Ozgümüs, A., Curti, E., Luckscheiter, B., Schwyn, B.: Long-term behavior of glass, improving the glass source term and substantiating the basic hypotheses. Final technical report 2004, European Commission CONTRACT N°FIKW-CT-2000 00007 (2004)Google Scholar
  169. 169.
    Gin, S., Ribet, I., Frugier, P., Chave, T., Angeli, F., Lartigue, J.E., de Combarieu, G., Godon, N.: Assessment of nuclear glass behavior in a geological disposal conditions, Current state of knowledge and recent advances. In: European Nuclear Conference Proceeding 2005 (2005)Google Scholar
  170. 170.
    Zhang, L., Lüttge, A.: Aluminosilicate Dissolution Kinetics, A General Stochastic Model. Journal of Physical Chemistry B 112, 1736–1742 (2008)Google Scholar
  171. 171.
    McGrail, B.P., Bacon, D.H., Icenhower, J., Mann, F.M., Puigh, R.J., Schaef, H.T., Mattigod, S.V.: Near-Field performance assessment for a low-activity waste glass disposal system, laboratory testing to modeling results. Journal of Nuclear Materials 298, 95–111 (2001)Google Scholar
  172. 172.
    Munier, I., Crovisier, J.L., Grambow, B., Fritz, B., Clement, A.: Modeling the alteration gel composition of simplified borosilicate glasses by precipitation of an ideal solid solution in equilibrium with the leachant. Journal of Nuclear Materials 324, 97–115 (2004)Google Scholar
  173. 173.
    Van der Lee, J., De Windt, L.: Chess tutorial and Cookbook, Updated version for 3.0, Ecole des Mines de Paris, LHM/RD/02/13 (2002)Google Scholar
  174. 174.
    Taylor, H.F.W., Famy, C., Scrivener, K.L.: Delayed Ettringite Formation. Cement and Concrete Research 31, 683–693 (2001)Google Scholar
  175. 175.
    Collepardi, M.: A state of the art review on delayed ettringite attack on concrete. Cement and Concrete Composites 25, 401–407 (2003)Google Scholar
  176. 176.
    Escadeillas, G., Hornain, H.: La durabilité des bétons vis-à-vis des environnements agressifs. In: Ollivier, J.P., Vichot, A. (eds.) La durabilité des bétons. Presses de l’Ecole Nationale des Ponts et Chaussées (2008)Google Scholar
  177. 177.
    Bouniol, P.: État des connaissances sur la radiolyse de l’eau dans les colis de déchets cimentés et son approche par simulation. Report CEA-R-6069 (2004)Google Scholar
  178. 178.
    Bouniol, P., Bjergbakke, E.: A comprehensive model to describe radiolytic processes in cement medium. Journal of Nuclear Materials 372, 1–15 (2008)Google Scholar
  179. 179.
    Berner, U.: A thermodynamic description of the evolution of the pore water chemistry and uranium speciation during the degradation of cement. Nagra technical Report 90-12 (1990)Google Scholar
  180. 180.
    Bennett, D.G., Read, D., Atkins, M., Glasser, F.P.: A thermodynamic model for blended cement. II. Cement hydrate phases; thermodynamic values and modeling studies. Journal of Nuclear Materials 190, 315–325 (1992)Google Scholar
  181. 181.
    Adenot, F.: Durabilité du béton: caractérisation et modélisation des processus physiques et chimiques de dégradation du ciment. PhD Thesis, Orléans University, France (1992)Google Scholar
  182. 182.
    Faucon, P., Le Bescop, P., Adenot, F., Bonville, P., Jacquinot, J.F., Pineau, F., Felix, B.: Leaching of cement, study of the surface layer. Cement and Concrete Research 26, 1707–1715 (1996)Google Scholar
  183. 183.
    Bentz, D.P., Garboczi, E.: Modeling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity. Materials and Structure 25, 523–533 (1992)Google Scholar
  184. 184.
    Delagrave, A., Pigeon, M., Marchand, J., Revertegat, E.: Influence of chloride ions and pH level on the durability of high performance cement pastes. Cement and Concrete Research 26, 749–760 (1996)Google Scholar
  185. 185.
    Gerard, B.: Contribution des couplages mécanique/chimie/transfert dans la tenue à long terme des ouvrages de stockage de déchets radioactifs. PhD Thesis. ENS Cachan (France) et Laval University, Québec (1996)Google Scholar
  186. 186.
    Truc, O., Ollivier, J.P., Nilsson, L.O.: Numerical simulation of multi-species transport through saturated concrete during a migration test. Ms. Diff. code. Cement and Concrete Research 30, 1581–1592 (2000)Google Scholar
  187. 187.
    Andra, Dossier, Argile – Tome Évolution phénoménologique du stockage géologique, ANDRA, Châtenay-Malabry, France (2005)Google Scholar
  188. 188.
    Marchand, J.: Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environment. Materials and Structures 34, 195–200 (2001)Google Scholar
  189. 189.
    Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Computers and Geosciences 29, 265–275 (2003)Google Scholar
  190. 190.
    Tognazzi, C.: Couplage fissuration/dégradation chimique dans les matériaux cimentaires, caractérisation et modélisation. PhD Thesis, Institut National des Sciences Appliquées de Toulouse, France (1998)Google Scholar
  191. 191.
    Mainguy, M., Tognazzi, C., Torrenti, J.M., Adenot, F.: Modeling of leaching in pure cement paste and mortar. Cement and Concrete Research 30, 83–90 (2000)Google Scholar
  192. 192.
    Garboczi, E.J., Bentz, D.P.: Multiscale analytical/numerical theory of the diffusivity of concrete. Advanced Cement Based Materials 8, 77–88 (1998)Google Scholar
  193. 193.
    Pivonka, P., Hellmich, C., Smith, D.: Microscopic effects on chloride diffusivity of cement pastes, a scale-transition analysis. Cement and Concrete Research 34, 2251–2260 (2004)Google Scholar
  194. 194.
    Bentz, D.P.: Three-dimensional computer simulation of cement hydration and microstructure development. Journal of the American Ceramic Society 80, 3–21 (1997)Google Scholar
  195. 195.
    Ye, G., Van Breugel, K., Fraaij, A.L.A.: Three-dimensional microstructure analysis of numerically simulated cementitious materials. Cement and Concrete Research 33, 215–222 (2003)Google Scholar
  196. 196.
    Ménard, O., Advocat, T., Ambrosi, J.P., Michard, A.: Behavior of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Applied Geochemistry 13, 105–126 (1998)Google Scholar
  197. 197.
    Fillet, C.: Mécanismes de corrosion et comportement des actinides dans le verre nucléaire R7T7. PhD thesis, Université de Montpellier II, France (1987)Google Scholar
  198. 198.
    Grambow, B.: Borosilicate glass, future research requirements or what we don’t know. MRS Bulletin (1994)Google Scholar
  199. 199.
    Pirlet, V., Van Iseghem, P., Dierckx, A., Desreux, J.F.: The investigation of the neptunium complexes formed upon the interaction of high level waste glass and Boom clay media. Journal of Alloys and Compounds, 271–273, 267-271 (1998)Google Scholar
  200. 200.
    Noguès, J.L.: Les mécanismes de corrosion des verres de confinement des produits de fission. PhD thesis, Université de Montpellier II, France (1984)Google Scholar
  201. 201.
    Vernaz, E., Godon, N.: Leaching of actinides from nuclear waste glass, French experience. Mater. Res. Soc., Scientific Basis for Nuclear Waste Management XV 257, 37–48 (1992)Google Scholar
  202. 202.
    Bamba, T., Nukaga, K., Sagawa, T.: Temperature effect on plutonium leach rate of nuclear waste glasses. Journal of Nuclear Science and Technology 26, 705–711 (1989)Google Scholar
  203. 203.
    Inagaki, Y., Furuya, H., Idemitsu, K., Arima, T., Osako, H., Banba, T., Maeda, K., Matsumoto, S., Nomura, I., Kikkawa, S., Saito, M., Okamoto, H.: Leaching and migration of neptunium in a simulated engineered barrier system consisting of HLW glass and compacted bentonite. Journal of Nuclear Materials 298, 168–173 (2001)Google Scholar
  204. 204.
    Pointeau, I.: Étude mécanistique et modélisation de la rétention de radionucléides par las silicates de calcium hydratés (CSH) des ciments. PhD Thesis, Université de Champagne-Ardenne, Reims, France (2000)Google Scholar
  205. 205.
    Viallis-Terrisse, H.: Interaction des Silicates de Calcium Hydratés, principaux constituants du ciment, avec les chlorures d’alcalins. Analogie avec les argiles, PhD Thesis, Université de Bourgogne (2000)Google Scholar
  206. 206.
    Landesman, C., Le Callonec, C., Richet, C., Ayache, R., Belkhadem, M., Domergue, C., Solet, C., Ly, J., Meier, P.: Rétention des radionucléides sur les matériaux cimentaires (C-S-H, Pâtes CPA et CLC) sains et dégradés, CEA Technical Note, NT SESD, pp. 99–95 (1999)Google Scholar
  207. 207.
    Iwada, T., Nagasaki, S., Tanaka, S.: Sorption study of Strontium onto hydrated cement phases using a sequential desorption method. Radiochimica Acta 88, 483–486 (2000)Google Scholar
  208. 208.
    Curti, E.: Coprecipitation of radionuclides, basic concepts, literature reviews and first applications. PSI Report 97-10 (1997)Google Scholar
  209. 209.
    Komarneni, S., Breval, E., Roy, D.M., Roy, R.: Reactions of some calcium silicates with metal cations. Cement and Concrete Research 18, 204–220 (1988)Google Scholar
  210. 210.
    Ziegler, F.: Heavy metal binding in cement-based waste materials, an investigation of the mechanism of Zinc sorption to calcium silicate hydrate. PhD Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (2000)Google Scholar
  211. 211.
    Ziegler, F., Scheidegger, M., Johson, C.A., Dähn, W.E.: Sorption mechanism of Zinc to calcium silicate hydrate, X-ray absorption fine structure (XAFS) investigation. Environmental Science and Technology 35, 1550–1555 (2001)Google Scholar
  212. 212.
    Wieland, E., Spieler, P.: Colloids in the mortar backfill of a cementitious repository for radioactive waste. In: Birchley, J., Ringele, R. (eds.) PSI Scientific Report 1998. Nuclear Energy and Safety, vol. IV. PSI Viligen (1998)Google Scholar
  213. 213.
    Heath, T.G., Ilett, D.J., Tweed, J.C.: Thermodynamic Modeling of the sorption of radioelements onto cementitious materials. In: MRS Symposium Proceedings, vol. 412, pp. 443–449 (1996)Google Scholar
  214. 214.
    Brown, D.R., Grutzek, M.W.: Iodine waste forms, calcium aluminate hydrate analogs. In: MRS Symposium Proceedings, vol. 44, pp. 911–918 (1985)Google Scholar
  215. 215.
    Liu, Y., Von Gunten, H.R.: Migration chemistry and behavior of iodine relevant to geological disposal of radioactive wastes. A literature review with a compilation of sorption data. PSI Report No. 19 (1988)Google Scholar
  216. 216.
    Pointeau, I., Piriou, B., Fedoroff, M., Barthes, M.G., Marmier, N., Fromage, F.: Sorption mechanisms of Eu3+ on C-S-H phases of hydrated cements. Journal of Colloid and Interface Science 236, 252–259 (2001)Google Scholar
  217. 217.
    Marx, G., Althenhein-Haese, C., Bischoff, H., Engelhardt, J., Feldmaier, F.: Investigations into speciation, sorption and corrosion of actinides in systems of high ionic strength. Journal of Radioanalytical and Nuclear Chemistry 194, 95–105 (1995)Google Scholar
  218. 218.
    Gougar, M., Scheetz, B., Roy, D.: Ettringite and CSH Portland cement phases for waste ion immobilization, a review. Waste Management 16, 182–188 (1996)Google Scholar
  219. 219.
    Atkins, M., Damidot, D., Glasser, F.: Performance of cementitious systems in the repository. In: MRS Symposium Proceeding, vol. 333, pp. 315–326 (1994)Google Scholar
  220. 220.
    Gorgeon, L.: Contribution à la modélisation physico-chimique de la rétention de radioéléments à vie longue par les matériaux argileux. PhD Thesis, Université Pierre et Marie Curie (Paris VI), Paris, France (1994)Google Scholar
  221. 221.
    Nolin, D.: Influence des anions sur la rétention de radioéléments par les matériaux argileux, PhD thesis, Université Pierre et Marie Curie (Paris VI), Paris, France (1997)Google Scholar
  222. 222.
    Davis, J.A., Kent, D.B.: Surface complexation modeling in aqueous chemistry. In: Hochella, M.F., White, A.F. (eds.) Mineral-water interface geochemistry, Reviews in mineralogy, vol. 23 (1990)Google Scholar
  223. 223.
    Lyklema, J.: Fundamentals of interface and colloid science. Solid-liquid interface, vol. II. Academic Press, London (1995)Google Scholar
  224. 224.
    Gileadi, E., Kirowa-Eisner, E., Penciner, J.: Interfacial Electrochemistry, An Experimental Approach. Addison-Wesley, Reading (1975)Google Scholar
  225. 225.
    Bockris, J.O., Conway, B.E., Yeager, E.: The Double Layer. Comprehensive Treatise of Electrochemistry, vol. 1. Plenum Press (1980)Google Scholar
  226. 226.
    Henocq, P.: Modélisation des interactions ioniques à la surface des Silicates de Calcium Hydratés, PhD Thesis, Université de Laval, QuébecGoogle Scholar
  227. 227.
    Hunter, R.J.: Foundations of Colloid Science, 2nd edn. Oxford University Press, Oxford (2001)Google Scholar
  228. 228.
    Nonat, A.: The structure and stoichiometru of C-S-H. Cement and Concrete Research 34, 1521–1528 (2004)Google Scholar
  229. 229.
    Hamid, S.A.: The crystal structure of the 11 Å natural tobermorite Ca2.25(Si3O7.5(OH)1.5)(H2O). Zeischrift für Kristallographie 154, 189–198 (1981)Google Scholar
  230. 230.
    Klur, I.: Etude par RMN de la structure des silicates de calcium hydrates, PhD Thesis, Université Pierre et Marie Curie, Paris, France (1996)Google Scholar
  231. 231.
    Richet, C., Le Bescop, P., Gallé, C., Peycelon, H., Bejaoui, S., Pointeau, I., L’Hostis, V., Bary, B.: Dossier de synthèse sur le comportement à long terme des colis, dossier de référence phénoménologique colis béton, CEA Technical Report RT 04-679-A (2004)Google Scholar
  232. 232.
    Frizon, F.: Décontamination électrocinétique des milieux poreux. Étude expérimentale et modélisation appliqués au césium dans les matériaux cimentaires, PhD Thesis, Institut National des Sciences Appliquées de Toulouse, France (2003)Google Scholar
  233. 233.
    Flint, E.P., Wells, L.S.: Study of the system CaO-SiO2-H2O at 30°C and of the reaction of water on the anhydrous calcium silicates. Journal of Research - National Bureau of Standards 12, 751–783 (1934)Google Scholar
  234. 234.
    Roller, P.S., Ervin Jr., G.: The system calcium oxide-silica-water at 30°C. The association of silicate ion in dilute alkaline solution. Journal of American Chemical Society 62, 461–471 (1940)Google Scholar
  235. 235.
    Taylor, H.F.W.: Hydrated Calcium Silicates. Part I. Compound Formation at Ordinary Temperatures. Journal of Chemical Society, 3682–3690 (1950)Google Scholar
  236. 236.
    Kalousek, G.L.: Application of differential thermal analysis in a study of the system lime-silioca-water. In: Proceedings of the 3rd international symposium on chemistry of cements, London, pp. 296–311 (1952)Google Scholar
  237. 237.
    Fui, K., Kondo, W.: Heterogeneous equilibria of calcium silicate hydrate in water at 30°C. Journal of Chemical Society Dalton Trans. V. 2, 645–651 (1981)Google Scholar
  238. 238.
    Atkins, M., Glasser, F.P., Kindness, A.: Cement hydrate phases: solubility at 25°C. Cement and Concrete Research 22, 241–246Google Scholar
  239. 239.
    Courault, A.C.: Simulation expérimentale des C-S-H dans les bétons modernes: Etude de la composition et des propriétés à l’équilibre dans des milieux complexes. PhD thesis, Université de Bourgogne, France (2000)Google Scholar
  240. 240.
    Cong, X., Kirkpatrick, R.J.: 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Materials 3, 144–156 (1996)Google Scholar
  241. 241.
    Grutzek, M., Benesi, A., Fanning, B.: Silicon-29 magic angle spinning nuclear magnetic resonance study of calcium silicate hydrates. Journal of American Ceramic Society 72, 665–668Google Scholar
  242. 242.
    Barret, P., Bertrandie, D.: Fundamental hydration kinetic features of the major cement constituents: Ca3SiO5 and beta-Ca2SiO4. Journal de Chimie Physique 83, 765–775 (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • F. Frizon
    • 1
  • S. Gin
    • 1
  • C. Jegou
    • 1
  1. 1.Nuclear Energy Division, Waste Treatment and Conditioning Research DepartmentCommissariat a l’Énergie Atomique (CEA)France

Personalised recommendations