Heat Transfer and Rheological Behaviour of Nanofluids – A Review

  • Haisheng Chen
  • Yulong Ding
Part of the Advances in Transport Phenomena book series (ADVTRANS, volume 1)


Nanofluids refer to dilute liquid suspensions of nanoparticles. Over the past decade, such materials generated lots of excitement mainly because a number of researchers reported drastic thermal conductivity enhancement with very small particle loadings. This also sparked hot debates on the underlying physics governing the experimentally observed phenomena. This paper gives an updated review on the topic. It is not intended to be exhaustive but meant to cover the main aspects associated with nanofluids with a specific focus on heat transfer applications. The review covers transport properties of nanofluids in particular thermal conductivity and shear viscosity, and heat transfer of nanofluids under convective and boiling conditions. No new physics appears to be behind the experimentally observed thermal conductivity enhancement as the vast majority of the experimental data fall within the range predicted by the conventional effective medium theory in combination with information of nanoparticle structuring. There seems to be no new physics either in terms of the experimentally observed increase in the shear viscosity of nanofluids as almost all the experimental data can be quantitatively interpreted by the conventional rheological and colloidal theories. There is no sufficient quantitative information, however, to infer the dominant mechanisms for heat transfer enhancement under convective and boiling conditions, where many controversies remain and require further research.


Heat Transfer Nusselt Number Convective Heat Transfer Rheological Behaviour Effective Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments Applications of Non-Newtonian Flows. FED, MD, vol. 231, 66, pp. 99–105. ASME, New York (1995)Google Scholar
  2. 2.
    Masuda, H., Ebata, A., Teramae, K., Hishiunma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersed by ultra-fine particles( dispersion of γ-Al2O3 SiO2 and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4, 227–233 (1993)Google Scholar
  3. 3.
    Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., Grulke, E.A.: Anomalous thermal conductivity enhancement in nano-tube suspensions. Applied Physics Letters 79, 2252–2254 (2001)CrossRefGoogle Scholar
  4. 4.
    Krishnamurthy, S., Lhattacharya, P., Phelan, P.E., Prasher, R.S.: Enhanced mass transport in nanofluids. Nano Letter 6(3), 419–423 (2006)CrossRefGoogle Scholar
  5. 5.
    Olle, B., Bucak, S., Holmes, T.C., Bromberg, L., Hatton, T.A., Wang, D.I.C.: Enhancement of oxygen mass trnafser using functionalized magnetic nanoparticles. Ind. Eng. Chem. Res. 45, 4355–4363 (2006)CrossRefGoogle Scholar
  6. 6.
    Wasan, D.T., Nikolov, A.D.: Spreading of nanofluids on solids. Nature 423, 156–159 (2003)CrossRefGoogle Scholar
  7. 7.
    Zhang, L.L., Jiang, Y., Ding, Y.L., Povey, M., York, D.W.: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). Journal of Nanoparticle Research 9, 479–489 (2007)CrossRefGoogle Scholar
  8. 8.
    Keblinski, P., Eastman, J.A., Cahill, D.G.: Nanofluids for thermal transport. Materials Today June Issue, 36–44 (2005)Google Scholar
  9. 9.
    Das, S.K., Choi, S.U.S., Patel, H.E.: Heat transfer in nanofluids-a review. Heat Transfer Engineering 27(10), 2–19 (2006)Google Scholar
  10. 10.
    Wang, X.Q., Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. International Journal of Thermal Sciences 46, 1–19 (2007)CrossRefGoogle Scholar
  11. 11.
    Ding, Y.L., Chen, H., Wang, L., Yang, C.Y., He, Y., Yang, W., Lee, W.P., Zhang, L.L., Huo, R.: Heat transfer intensification using nanofluids. KONA Powder and Particle 25, 23–38 (2007)Google Scholar
  12. 12.
    Trisaksri, V., Wongwises, S.: Critical review of heat transfer characteristics of nanofluids. Renewable & Sustainanble Energy Reviews 11, 512–523 (2007)CrossRefGoogle Scholar
  13. 13.
    Murshed, S.M.S., Leong, K.C., Yang, C.: Thermophysical and electrokinetic properties of nanofluids – A critical review. Applied Thermal Engineering 28, 2109–2125 (2008)CrossRefGoogle Scholar
  14. 14.
    Yu, W., France, D.W., Routbort, J.L., Choi, S.U.S.: Review and comparison of nanofluids thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 29, 432–460 (2008)CrossRefGoogle Scholar
  15. 15.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, 2nd edn. Wiley & Sons Inc., Chichester (2002)Google Scholar
  16. 16.
    Wang, X., Xu, X., Choi, S.U.S.: Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer 13, 474–480 (1999)CrossRefGoogle Scholar
  17. 17.
    Wang, B.X., Zhou, L.P., Peng, X.F.: A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer 46, 2665–2672 (2003)zbMATHCrossRefGoogle Scholar
  18. 18.
    Nagasaka, Y., Nagashima, A.: Absolute measurement of the thermal conductivity of electrically conducing liquids by the transient hot-wire method. Journal of Physics E: Scientific Instruments 14, 1435–1440 (1981)CrossRefGoogle Scholar
  19. 19.
    Czarnetzki, W., Roetzel, W.: Temperature oscillation techniques for simultaneous measurement of thermal-diffusivity and conductivity. International Journal of Thermophysics 16, 413–422 (1995)CrossRefGoogle Scholar
  20. 20.
    Cahill, D.G.: Thermal conductivity measurement from 30 to 750K: the 3ω method. Review of Scientific Instruments 61, 802–808 (1990)CrossRefGoogle Scholar
  21. 21.
    Yang, B., Han, Z.H.: Temperature-dependent thermal conductivity of nanorod-based nanofluids. Applied Physics Letters 89, 083111 (2006)Google Scholar
  22. 22.
    Wang, Z.L., Tang, D.W., Liu, S., Zheng, X.H., Araki, N.: Thermal conductivity and thermal diffusivity measurements of nanofluids by 3ω method and mechanism analysis of heat transport. International Journal of Thermophysics 28, 1255–1268 (2007)CrossRefGoogle Scholar
  23. 23.
    Oh, D.W., Jain, A., Eaton, J.K., Goodson, K.E., Lee, J.S.: Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow 29, 1456–1461 (2008)CrossRefGoogle Scholar
  24. 24.
    Louge, M., Chen, X.: Heat transfer enhancement in suspensions of agitated solids. Part II: Thermophoretic transport of nanoparticles in the diffusion limit. International Journal of Heat and Mass Transfer 51, 5130–5243 (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kabelac, K., Kuhnke, J.F.: Heat transfer mechanisms in nanofluids – experimental and theory. In: de Vahl Davis, G., Leonardi, E. (eds.) Proceedings of 13th International Heat Transfer Conference, Sydney, Australia, August 13-18, pp. 110–111 (2006)Google Scholar
  26. 26.
    Lee, S., Choi, S., Li, S., Eastman, J.: Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer 121, 280–289 (1999)CrossRefGoogle Scholar
  27. 27.
    Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physical Letter 78, 718–720 (2001)CrossRefGoogle Scholar
  28. 28.
    Xie, H.Q., Wang, J., Xi, T., Liu, Y., Ai, F.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics 91, 4568–4572 (2002)CrossRefGoogle Scholar
  29. 29.
    Xie, H.Q., Wang, J., Xi, T., Liu, Y.: Thermal conductivity of suspensions containing nanosized SiC particles. International Journal of Thermophysics 23, 571–580 (2002)CrossRefGoogle Scholar
  30. 30.
    Biercuk, M.J.: Carbon nanotube composites for thermal management. Applied Physics Letters 80, 2767–2769 (2002)CrossRefGoogle Scholar
  31. 31.
    Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 125, 567–574 (2003)CrossRefGoogle Scholar
  32. 32.
    Patel, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B., Pradeepa, T.: Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Applied Physical Letters 83, 2931–2933 (2003)CrossRefGoogle Scholar
  33. 33.
    Kumar, D.H., Patel, H.E., Kumar, V.R.R., Sundararajan, T., Pradeep, T., Das, S.K.: Model for heat conduction in nanofluids. Physical Review Letter 93, 144301 (2004)CrossRefGoogle Scholar
  34. 34.
    Assael, M.J., Chen, C.F., Metaxa, I., Wakeham, W.A.: Thermal conductivity of suspensions of carbon nanotubes in water. International Journal of Thermophysics 25, 971–985 (2004)CrossRefGoogle Scholar
  35. 35.
    Zhang, X., Gu, H., Fujii: Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science 31, 593–599 (2007)CrossRefGoogle Scholar
  36. 36.
    Wen, D.S., Ding, Y.L.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (Nanofluids). Journal of Thermophysics and Heat Transfer 18(4), 481–485 (2004)CrossRefGoogle Scholar
  37. 37.
    Wen, D.S., Ding, Y.L.: Experiment investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. Journal of Heat and Mass Transfer 47, 5181–5188 (2004)CrossRefGoogle Scholar
  38. 38.
    Wen, D.S., Ding, Y.L.: Experimental investigation into the pool boiling heat transfer of aqueous based γ -Alumina nanofluids. Journal of Nanoparticle Research 7, 265–274 (2005)CrossRefGoogle Scholar
  39. 39.
    Wen, D.S., Ding, Y.L.: Formulation of nanofluids for natural convective heat transfer applications. International Journal of Heat and Fluid Flow 26, 855–864 (2005)CrossRefGoogle Scholar
  40. 40.
    Wen, D.S., Ding, Y.L.: Natural convective heat transfer of suspensions of TiO2 nanoparticles (nanofluids). Transactions of IEEE on Nanotechnology 5, 220–227 (2006)CrossRefGoogle Scholar
  41. 41.
    Ding, Y.L., Alias, H., Wen, D.S., Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer 49, 240–250 (2006)CrossRefGoogle Scholar
  42. 42.
    He, Y.R., Jin, Y., Chen, H.S., Ding, Y.L., Cang, D.Q., Lu, H.L.: Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. International Journal of Heat and Mass Transfer 50, 2272–2281 (2007)zbMATHCrossRefGoogle Scholar
  43. 43.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87, 215502 (2001)CrossRefGoogle Scholar
  44. 44.
    Berber, S., Kwon, Y.K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Physical Review Letter 84(20), 4613–4616 (2000)CrossRefGoogle Scholar
  45. 45.
    Nan, C.W., Shi, Z., Lin, Y.: A simple model for thermal conductivity of carbon nanotube-based composites. Chemical Physics Letters 375, 666–669 (2003)CrossRefGoogle Scholar
  46. 46.
    Koo, J., Kleinstreuer, C.: A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research 6, 577–588 (2004)CrossRefGoogle Scholar
  47. 47.
    Gao, L., Zhou, X., Ding, Y.L.: Effective thermal and electrical conductivity of carbon nanotube composites. Chemical Physics Letters 434, 297–300 (2007)CrossRefGoogle Scholar
  48. 48.
    Keblinski, P., Prasher, R., Eapen, J.: Thermal conductance of nanofluids: is the controversy over? Journal of Nanoparticle Research 10, 1089–1097 (2008)CrossRefGoogle Scholar
  49. 49.
    Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A.: Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer 45, 855–863 (2002)zbMATHCrossRefGoogle Scholar
  50. 50.
    Prasher, R., Bhattacharya, P., Phelan, P.E.: Brownian-Motion-Based Convective-Conductive Model for the effective thermal conductivity of nanofluids. Journal of Heat Transfer 128, 588–595 (2006)CrossRefGoogle Scholar
  51. 51.
    Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research 5, 167–171 (2003)CrossRefGoogle Scholar
  52. 52.
    Prasher, R., Phelan, P.E., Bhattacharya, P.: Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions (nanofluids). Nano Letters 6(7), 1529–1534 (2006)CrossRefGoogle Scholar
  53. 53.
    Chen, G.: Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles. ASME Journal of Heat Transfer 118, 539–545 (1996)CrossRefGoogle Scholar
  54. 54.
    Evans, W., Fish, J., Keblinski, P.: Role of Brownian motion hydrodynamcis on nanofluids thermal conductivity. Applied Physical Letters 88, 093116 (2006)Google Scholar
  55. 55.
    Shenogin, S., Bodapati, A., Xue, L., Ozisik, R., Keblinski, P.: Effect of chemical functionalization on thermal transport of carbon nanotube composites. Applied Physics Letters 85, 2229–2231 (2004)CrossRefGoogle Scholar
  56. 56.
    Shenogin, S., Xue, L.P., Ozisik, R., Keblinski, P., Cahill, D.G.: Role of thermal boundary resistance on the heat flow in carbon nanotube composites. Journal of Applied Physics 95, 8136–8144 (2004)CrossRefGoogle Scholar
  57. 57.
    Prasher, R., Bhattacharya, P., Phelan, P.E.: Thermal conductivity of nanoscale colloidal solutions (nanofluids). Physical Review Letters 94, 025901 (2005)Google Scholar
  58. 58.
    Putnam, P.A., Cahill, D.G., Braun, P.V., Ge, Z., Shimmin, R.G.: Thermal conductivity of nanoparticle suspensions. Journal of Applied Physics 99, 084308 (2006)Google Scholar
  59. 59.
    Hong, K.S., Hong, T.K., Yang, H.S.: Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letter 88, 031901 (2006)Google Scholar
  60. 60.
    Chen, H.S., Ding, Y.L., He, Y.R., Tan, C.Q.: Rheological behaviour of ethylene glycol based titania naofluids. Chemical Physics Letters 444, 333–337 (2007)CrossRefGoogle Scholar
  61. 61.
    Chen, H.S., Witharana, S., Jin, Y., Kim, C., Ding, Y.L.: Predicting the thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology 7, 151–157 (2009)CrossRefGoogle Scholar
  62. 62.
    Chen, H.S., Ding, Y.L., Lakpin, A.A., Fan, X.L.: Rheological behaviour of ethylene glycol - titanate nanotube nanofluids. Journal of Nanoparticle Research (available online) (in press, 2009)Google Scholar
  63. 63.
    Kwak, K., Kim, C.: Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal 17, 35–40 (2005)Google Scholar
  64. 64.
    Prasher, R., Song, D., Wang, J.: Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letter 89, 133108 (2006)CrossRefGoogle Scholar
  65. 65.
    Chen, H.S., Ding, Y.L., He, Y.R., Tan, C.Q.: Rheological behaviour of nanofluids. New Journal of Physics 9, 367, 1–25 (2007)CrossRefGoogle Scholar
  66. 66.
    Namburu, P.K., Kulkarni, D.P., Misra, D., Das, D.K.: Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Experimental Thermal and Fluid Science 32, 397–402 (2007)CrossRefGoogle Scholar
  67. 67.
    Nguyen, C.T., Desgranges, F., Galanis, N., Roy, G., Maré, T., Boucher, S., Angue Mintsa, H.: Viscosity data for Al2O3-water nanofluids - hysteresis: is heat transfer enhancement using nanofluids reliable? International Journal of Thermal Sciences 47, 103–111 (2008)CrossRefGoogle Scholar
  68. 68.
    Das, S.K., Putra, N., Roetzel, W.: Pool boiling characteristics of nano–fluids. International Journal of Heat and Mass Transfer 46, 851–862 (2003)CrossRefGoogle Scholar
  69. 69.
    Xuan, Y.M., Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat transfer 125, 151–155 (2003)CrossRefGoogle Scholar
  70. 70.
    Ding, Y.L., Chen, H.S., He, Y.R., Lapkin, A.A., Yeganeh, M., Siller, L., Butenko, Y.: Forced convective heat transfer of nanofluids. Advanced Powder Technology 18, 813–824 (2007)CrossRefGoogle Scholar
  71. 71.
    Chen, H.S., Yang, W., He, Y.R., Ding, Y.L., Lapkin, A.A., Bavykin, D.V., Tan, C.Q.: Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes under the laminar flow conditions. Powder Technology 183(1), 63–72 (2008)CrossRefGoogle Scholar
  72. 72.
    Egres, R.G., Wagner, N.J.: The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. Journal of Rheology 49, 719–746 (2005)CrossRefGoogle Scholar
  73. 73.
    Einstein, A.: Eine neue Bestimmung der Molekul-dimension (A new determination of the molecular dimensions). Annalen der Physik 19(2), 289–306 (1906)CrossRefGoogle Scholar
  74. 74.
    Einstein, A.: Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekul-dimension (Correction of my work: A new determination of the molecular dimensions). Annalen der Physik 34(3), 591–592 (1911)CrossRefGoogle Scholar
  75. 75.
    Batchelor, G.K.: Effect of brownian-motion on bulk stress in a suspension of spherical-particles. Journal of Fluid Mechanics 83(1), 97–117 (1977)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Brenner, H., Condiff, D.W.: Transport mechanics in systems of orietable particles, Part IV. Convective Transprort. Journal of Colloid and Interface Science 47(1), 199–264 (1974)CrossRefGoogle Scholar
  77. 77.
    Russel, W.B., Saville, D.A., Scholwater, W.R.: Colloidal Dispersions. Cambridge University Press, Cambridge (1991)zbMATHGoogle Scholar
  78. 78.
    Chow, T.S.: Viscosities of concentrated dispersions. Physical Review E 48(3), 1977–1983 (1993)CrossRefGoogle Scholar
  79. 79.
    Petrie, C.J.S.: The rheology of the fibre suspensions. Journal of Non-Newtonian Fluid Mechnanics 87, 369–402 (1999)zbMATHCrossRefGoogle Scholar
  80. 80.
    Goodwin, J.W., Hughes, R.W.: Rheology for Chemists-An introduction. The Royal Society of Chemistry (2000)Google Scholar
  81. 81.
    Goodwin, J.W.: Colloids and interfaces with surfactants and polymers-An introduction. John Wiley & Sons, Chichester (2003)Google Scholar
  82. 82.
    Larson, R.G.: The rheology of dilute solutions of flexible polymers: progress and problems. Journal of Rheology 49(1), 1–70 (2005)CrossRefGoogle Scholar
  83. 83.
    Abdulagatov, I.M., Azizov, N.D.: Experimental study of the effect of temperature, pressure and concentration on the viscosity of aqueous NaBr solutions. Journal of Solution Chemistry 35(5), 705–738 (2006)CrossRefGoogle Scholar
  84. 84.
    Krieger, I.M., Dougherty, T.J.: A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology 3, 137–152 (1959)CrossRefGoogle Scholar
  85. 85.
    Cross, M.M.: Rheology of non-Newtonian fluids - a new flow equation for pseudoplastic systems. Journal of Colloid Science 20(5), 417–437 (1965)CrossRefGoogle Scholar
  86. 86.
    Xuan, Y., Li, Q., Hu, W.: Aggregation structure and thermal conductivity of nanofluids. AIChE Journal 49, 1038–1043 (2003)CrossRefGoogle Scholar
  87. 87.
    Doi, M., Edwards, S.F.: Dynamics of rod-like macromolecules in concentrated solution, Part 1. Journal of Colloid Science 74, 560–570 (1978)Google Scholar
  88. 88.
    Doi, M., Edwards, S.F.: Dynamics of rod-like macromolecules in concentrated solution, Part 2. Journal of Colloid Science 74, 918–932 (1978)Google Scholar
  89. 89.
    Doi, M., Edwards, S.F.: Dynamics of concentrated polymer systems, Part 1: Brownian motion in the equilibrium state. Journal of Colloid Science 74, 1789–1801 (1978)Google Scholar
  90. 90.
    Doi, M., Edwards, S.F.: Dynamics of concentrated polymer systems, Part 2: Molecular motion under flow. Journal of Colloid Science 74, 1802–1817 (1978d)Google Scholar
  91. 91.
    Doi, M., Edwards, S.F.: Dynamics of concentrated polymer systems, Part 3: The constitutive Equation. Journal of Colloid Science 74, 1818–1832 (1978)Google Scholar
  92. 92.
    Mohraz, A., Moler, D.B., Ziff, R.M., Solomon, M.J.: Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Physical Review Letters 92, 155503 (2004)CrossRefGoogle Scholar
  93. 93.
    Lee, D., Kim, J., Kim, B.: A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. Journal of Physical Chemistry B 110, 4323–4328 (2006)CrossRefGoogle Scholar
  94. 94.
    Mary, B., Dubois, C., Carreau, P.J., Brousseau, P.: Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheology Acta 45, 561–573 (2006)CrossRefGoogle Scholar
  95. 95.
    Sonntag, R.C., Russel, W.B.: Structure and Breakup of Flocs subjected to Fluid Stresses: I. Shear experiments. Journal of Colloid and Interface Science 113(2), 399–413 (1986)CrossRefGoogle Scholar
  96. 96.
    Sonntag, R.C., Russel, W.B.: Structure and Breakup of Flocs subjected to Fluid Stresses: II. Theory. Journal of Colloid and Interface Science 115(2), 378–389 (1987)CrossRefGoogle Scholar
  97. 97.
    Sonntag, R.C., Russel, W.B.: Structure and Breakup of Flocs subjected to Fluid Stresses: III. Converging flow. Journal of Colloid and Interface Science 115(2), 390–395 (1987)CrossRefGoogle Scholar
  98. 98.
    Sonntag, R.C., Russel, W.B.: Elastic properties of flocculated networks. Journal of Colloid and Interface Science 116(2), 485–489 (1987)CrossRefGoogle Scholar
  99. 99.
    Mills, P.D.A., Goodwin, J.W., Grover, B.W.: Shear field modification of strongly flocculated suspensions-aggregate morphology. Colliod & Polymer Science 269, 949–963 (1991)CrossRefGoogle Scholar
  100. 100.
    Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Annalen der Physik 24(7), 636–664 (1935)CrossRefGoogle Scholar
  101. 101.
    Rohsenow, W.M., Hartnett, J.P.: Handbook of Heat transfer. McGraw Hill, New York (1973)Google Scholar
  102. 102.
    Xuan, Y.M., Roetzel, W.: Conceptions for heat transfer correlation of nanofluids. International Journal of Heat and Mass Transfer 43, 3701–3707 (2000)zbMATHCrossRefGoogle Scholar
  103. 103.
    Li, Q., Xuan, Y.M.: Convective heat transfer and flow characteristics of Cu-water nanofluids. Science in China, Series E 45, 408–416 (2002)Google Scholar
  104. 104.
    Jang, S.P., Choi, S.U.S.: Cooling performance of a microchannel heat sink with nanofluids. Applied Thermal Engineering 26, 2457–2463 (2006)CrossRefGoogle Scholar
  105. 105.
    Heris, S.Z., Esfahany, M.N., Etemad, S.G.: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in a circular tube. International Journal of Heat and Fluid Flow 28, 203–210 (2007)CrossRefGoogle Scholar
  106. 106.
    Hwang, K.S., Jang, S.P., Choi, S.U.S.: Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. International Journal of Heat and Mass Transfer 52, 193–199 (2009)zbMATHCrossRefGoogle Scholar
  107. 107.
    Jung, J.Y., Oh, H.K., Kwak, H.Y.: Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer 52, 466–472 (2009)CrossRefGoogle Scholar
  108. 108.
    Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer 11, 150–170 (1998)CrossRefGoogle Scholar
  109. 109.
    Chein, R., Chuang, J.: Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences 46, 57–66 (2007)CrossRefGoogle Scholar
  110. 110.
    Lee, J., Mudawar, I.: Assessment of the effectiveness of nanofluids for single phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer 50, 452–463 (2007)CrossRefGoogle Scholar
  111. 111.
    Yang, Y., Zhong, Z.G., Grulke, E.A., Anderson, W.B., Wu, G.: Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow. International Journal of Heat and Mass Transfer 48, 1107–1116 (2005)CrossRefGoogle Scholar
  112. 112.
    Rea, U., McKrell, T., Hu, L.W., Buongiorno, J.: Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. International Journal of Heat and Mass Transfer 52, 2043–2048 (2009)CrossRefGoogle Scholar
  113. 113.
    Merhi, D., Lemaire, E., Bossis, G., Moukalled, F.: Particle migration in a concentrated suspension flowing between rotating parallel plates: Investigation of diffusion flux coefficients. Journal of Rheology 49, 1429–1448 (2005)CrossRefGoogle Scholar
  114. 114.
    Phillips, R.J., Armstrong, R.C., Brown, R.A., Graham, A.L., Abbott, J.R.: A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Physics of Fluids 4, 30–40 (1992)zbMATHCrossRefGoogle Scholar
  115. 115.
    Frank, M., Anderson, D., Weeks, E.R., Morris, J.F.: Particle migration in pressure-driven flow of a Brownian suspension. Journal of Fluid Mechanics 493, 363–378 (2003)zbMATHCrossRefGoogle Scholar
  116. 116.
    Wen, D.S., Ding, Y.L.: Effect on heat transfer of particle migration in suspensions of nanoparticles flowing through minichannels. Microfluidics and Nanofluidics 1&2, 183–189 (2005)CrossRefGoogle Scholar
  117. 117.
    Khanafer, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer 46, 3639–3653 (2003)zbMATHCrossRefGoogle Scholar
  118. 118.
    Abu-Nada, E., Masoud, Z., Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. International Communications in Heat and Mass Transfer 35, 657–665 (2008)CrossRefGoogle Scholar
  119. 119.
    Nanna, A.G.A., Fistrovich, T., Malinski, K., Choi, S.U.S.: Thermal transport phenomena in buoyancy-driven nanofluids. In: Proceedings of 2005 ASME International Mechanical Engineering Congress and RD&D Exposition, Anaheim, California, USA, November 15-17, 2004 (2005)Google Scholar
  120. 120.
    Nnanna, A.G.A., Routhu, M.: Transport phenomena in buoyancy-driven nanofluids – Part II. In: Proceedings of 2005 ASME Summer Heat Transfer Conference, San Francisco, California, USA, July 17-22 (2005)Google Scholar
  121. 121.
    Putra, N., Roetzel, W., Das, S.K.: Natural convection of nano-fluids. Heat and Mass Transfer 39, 775–784 (2003)CrossRefGoogle Scholar
  122. 122.
    Nnanna, A.G.A.: Experimental model of temperature-driven nanofluid. Journal of Heat Transfer 129, 697–704 (2007)CrossRefGoogle Scholar
  123. 123.
    Inaba, H.: Experimental study of natural convection in an inclined air layer. International Journal of Heat and Mass Transfer 27, 1127–1139 (1984)CrossRefGoogle Scholar
  124. 124.
    Tsai, C.Y., Chien, H.T., Ding, P.P., Chan, B., Luh, T.Y., Chen, P.H.: Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance. Materials Letters 58, 1461–1465 (2003)CrossRefGoogle Scholar
  125. 125.
    You, S.M., Kim, J.H., Kim, K.H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Applied Physics Letters 83, 3374–3376 (2003)CrossRefGoogle Scholar
  126. 126.
    Tu, J.P., Dinh, N., Theofanous, T.: An experimental study of nanofluid boiling heat transfer. In: Proceedings of 6th International Symposium on Heat Transfer, Beijing, China (2004)Google Scholar
  127. 127.
    Vassallo, P., Kumar, R., Damico, S.: Pool boiling heat transfer experiments in silica-water nano-fluids. International Journal of Heat and Mass Transfer 47, 407–411 (2004)CrossRefGoogle Scholar
  128. 128.
    Bang, I.C., Chang, S.H.: Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. International Journal of Heat and Mass Transfer 48, 2407–2419 (2005)CrossRefGoogle Scholar
  129. 129.
    Wen, D.S., Ding, Y.L., Williams, R.A.: Pool boiling heat transfer of aqueous based TiO2 nanofluids. Journal of Enhanced Heat Transfer 13, 231–244 (2006)CrossRefGoogle Scholar
  130. 130.
    Kim, H., Kim, J., Kim, M.: Experimental study on CHF characteristics of water-TiO2 nanofluids. Nuclear Engineering and Technology 38, 61–68 (2006)Google Scholar
  131. 131.
    Kim, S.J., Bang, I.C., Buongiorno, J., Hu, L.W.: Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Applied Physics Letters 89, 153107 (2006)CrossRefGoogle Scholar
  132. 132.
    Kim, S.J., Bang, I.C., Buongiorno, J., Hu, L.W.: Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. International Journal of Heat and Mass Transfer 50, 4105–4116 (2007)CrossRefGoogle Scholar
  133. 133.
    Chopkar, M., Das, A.K., Manna, I., Das, P.K.: Pool boiling heat transfer characteristics of ZrO2-water nanofluids from a flat surface in a pool. Heat and Mass Transfer 44, 999–1004 (2008)CrossRefGoogle Scholar
  134. 134.
    Wen, D.S.: Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF). International Journal of Heat and Mass Transfer 51, 4958–4965 (2008)zbMATHCrossRefGoogle Scholar
  135. 135.
    Milanova, D., Kumar, R.: Role of ions in pool-boiling heat transfer of pure and silica nanofluids. Applied Physical Letters 87, 233107 (2005)CrossRefGoogle Scholar
  136. 136.
    Coursey, J.S., Kim, J.: Nanofluid boiling: the effect of surface wettability. International Journal of Heat and Fluid Flow 29, 1577–1585 (2008)CrossRefGoogle Scholar
  137. 137.
    Lv, L.C., Liu, Z.H.: Boiling characteristics in small vertical tubes with closed bottom for nanofluids and nanoparticle-suspensions. Heat Mass Transfer 45, 1–9 (2008)Google Scholar
  138. 138.
    Maiga, S.E., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows. International Journal of Heat and Fluid Flow. 26, 530–546 (2005)CrossRefGoogle Scholar
  139. 139.
    Williams, W., Buongiorno, J., Hu, L.W.: Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer – Transaction of ASME 130, 042412 (2008)Google Scholar
  140. 140.
    Maxwell, J.C.: A treatise on electricity and magnetism. Clarendon Press, Oxford (1873)Google Scholar
  141. 141.
    Hamilton, R.L., Crosser, O.K.: Thermal conductivity of heterogeneous two-component systems. I & EC Fundamentals 1, 187–191 (1962)CrossRefGoogle Scholar
  142. 142.
    Jeffrey, D.J.: Conduction through a random suspension of spheres. Proceedings of Royal Society of London Series A 335, 355–367 (1973)CrossRefGoogle Scholar
  143. 143.
    Davis, R.H.: The effective thermal conductivity of a composite material with spherical inclusions. International Journal of Thermophysics 7(3), 609–620 (1986)CrossRefGoogle Scholar
  144. 144.
    Yu, W., Choi, S.U.S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton–Crosser model. Journal of Nanoparticle Research 6, 355–361 (2004)CrossRefGoogle Scholar
  145. 145.
    Xue, Q.Z.: Model for effective thermal conductivity of nanofluids. Physics Letters A 307, 313–317 (2003)CrossRefGoogle Scholar
  146. 146.
    Xue, Q., Xu, W.M.: A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics 90, 298–301 (2005)CrossRefGoogle Scholar
  147. 147.
    Jang, S.P., Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 84, 4316–4318 (2004)CrossRefGoogle Scholar
  148. 148.
    Koo, J., Kleinstreuer, C.: Laminar nanofluid flow in micro-heat sinks. International Journal of Heat and Mass Transfer 48, 2652–2661 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Haisheng Chen
    • 1
  • Yulong Ding
    • 1
  1. 1.Institute of Particle Science & EngineeringUniversity of LeedsLeedsUK

Personalised recommendations