Advertisement

Ethnobotanic, Interdisciplinary and Multidisciplinary Methodologies

  • John E. StallerEmail author
Chapter
  • 1.7k Downloads

Abstract

This chapter is primarily focused on the methodological approaches and technological innovations used by the archaeologists and ethnobotanists to answer the larger questions on plant domestication, early agriculture, and human adaptation. The research on maize has generally evoked the broader, more theoretical questions surrounding early agriculture and its role in complex socio-cultural development. However, the early archaeological research on plant domestication in the New World was primarily focused on the origins of maize and the various roles of maize in such developmental and evolutionary processes. Particular emphasis is laid on ethnobotany, plant macrobotanical remains (kernels, cobs, etc., recovered primarily from archaeological sites), microfossils (pollen and phytoliths, taken from lakes and swamps as well as archaeological contexts), and paleodiet through bone chemistry involving carbon and strontium isotope analysis. The scientific literature comprising research from these disciplines has significantly influenced the archaeological reconstruction of the roles of maize in the ancient New World economies in the past three decades. Such data have provided an ever-increasing detail on the contextual associations, and the economic importance of maize throughout prehistory. Most of the archaeological studies have been focused on issues of plant domestication and early agriculture in the Americas. Therefore, discussion on maize must necessarily be within the context of such multidisciplinary research. In fact, few topics have generated as much theoretical speculation as the origin of agriculture and the role of maize in such adaptive and developmental changes.

Keywords

Plant Domestication Maize Pollen Wild Grass Food Residue Early Agriculture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arford MR, Horn SP (2004) Pollen evidence of the earliest maize agriculture in Costa Rica. J Lat Am Geogr 3:108–115Google Scholar
  2. Babot MP (2004) Tecnología y utilización de artefactos en el noroeste prehispánico. Ph.D. Dissertation. Universidad Nacional de Tucumán, Tucumán, ArgentinaGoogle Scholar
  3. Barba L, Ortiz A (1992) Análisis químico de pisos de ocupación: un caso etnográfico en Tlaxcala, Mexico. Lat Am Antiq 3:63–82Google Scholar
  4. Barba L, Ludlow BM, Manzanilla L, Valadez R (1987) La vida doméstica de Teotihuacan: Un estudio interdisciplinario. Cien y Desarro 7:21–33Google Scholar
  5. Barba L, Manzanilla L (1987) Estudio de areas de actividad. In: Manzanilla L (ed) Coba, Quintana Roo Analysis De Dos Unidades Habitacionales Mayas. Universidad Nacional Autonoma de Mexico, Mexico, DFGoogle Scholar
  6. Beadle GW (1981) Origin of corn: pollen evidence. Science 213:890–892Google Scholar
  7. Bellwood P (2005) First farmers: the origins of agricultural societies. Blackwell, LondonGoogle Scholar
  8. Benson L, Stein J, Taylor H, Friedman R, Windes TC (2006) The agricultural productivity of chaco canyon and the source(s) of pre-Hispanic maize found in Pueblo Bonito. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 290–314Google Scholar
  9. Benz B (1999) On the origin, evolution and dispersal of maize. In: Blake M (ed) Pacific Latin America in prehistory. The evolution of archaic and formative cultures. Washington State University Press, Pullman, pp 25–38Google Scholar
  10. Benz BF (2001) Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca. Proc Natl Acad Sci USA 98(4):2104–2106Google Scholar
  11. Benz BF (2006) Maize in the Americas. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 9–20Google Scholar
  12. Benz BF, Iltis HH (1990) Studies in archaeological maize. I. The “wild” maize from San Marcos Cave reexamined. Am Antiq 55:500–511Google Scholar
  13. Benz B, Long A (2000) Early evolution of maize in the Tehuacán Valley, Mexico. Curr Anthropol 41(3):459–465Google Scholar
  14. Benz BF, Staller JE (2006) The antiquity, biogeography, and culture history of maize in the Americas. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 647–673Google Scholar
  15. Benz BF, Staller JE (2009) The antiquity, biogeography, and culture history of maize in Mesoamerica. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize in mesoamerica: multidisciplinary approaches. LeftCoast Press, Walnut Creek, CA, pp 267–275Google Scholar
  16. Benz B, Perales H, Brush S (2007) Tzeltal and Tzotzil farmer knowledge and maize diversity in chiapas, Mexico. Curr Anthropol 48(2):289–300Google Scholar
  17. Binford LR (1962) Archaeology as anthropology. Am Antiq 28(2):217–225Google Scholar
  18. Binford LR (1964) A consideration of archaeological research design. Am Antiq 29(4):425–441Google Scholar
  19. Binford LR (1965) Archaeological systematics and the study of culture process. Am Antiq 31:203–210Google Scholar
  20. Binford LR (1968) Post-pleistocene adaptations. In: Binford SR, Binford LR (eds) New perspectives in archaeology. Aldine, Chicago, IL, pp 5–33Google Scholar
  21. Binford LR (1980) Willow smoke and dog’s tails: hunters and gatherer settlement systems and archaeological site formation. Am Antiq 45(1):4–20Google Scholar
  22. Binford LR (1989) Debating archaeology. Academic, San Diego, CAGoogle Scholar
  23. Binford LR (2001) Constructing frames of reference: an analytical method for archaeological theory building using hunter-gatherer and environmental data sets. University of California Press, Berkeley, CAGoogle Scholar
  24. Blake M (2006) Dating the initial spread of maize. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize. Elsevier, San Diego, CA, pp 55–72Google Scholar
  25. Blake M, Chisholm BS, Clark JE, Voorhies B, Love MW (1992) Prehistoric subsistence in the soconusco region. Curr Anthropol 33(1):83–94Google Scholar
  26. Bonzani R, Oyuela-Caycedo A (2006) The gift of the variation and dispersion of maize: Social and technological context in Amerindian societies. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 344–356Google Scholar
  27. Braidwood R (1952) From cave to village. Sci Am 187:62–66Google Scholar
  28. Braidwood R (1960) The agricultural revolution. Sci Am 203:130–148Google Scholar
  29. Braidwood R, Reed CA (1957) The achievement and early consequences of food production: a consideration of the archaeological and natural historical evidence. Cold Spring Harb Symp Quant Biol 22:19–31Google Scholar
  30. Bray W, Herrera L, Schrimpff MC, Botero P, Monsalve JG (1987) The ancient agricultural landscape of Calima, Colombia. In: Denevan WM, Gregory Knapp KM (eds) Pre-Hispanic agricultural fields in the Andean region. BAR International Series 359, Oxford, pp 443–481Google Scholar
  31. Brown CH (1999a) Lexical acculturation in Native American languages. Oxford University Press, New YorkGoogle Scholar
  32. Brown CH (2006a) Glottochronology and the chronology of maize in the Americas. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 647–663Google Scholar
  33. Bruhns KO (1994) Ancient South America. Cambridge World archaeology. Cambridge University Press, CambridgeGoogle Scholar
  34. Burger RL (1992) Chavín and the origins of Andean civilization. Thames and Hudson, LondonGoogle Scholar
  35. Bush MB, Piperno DR, Colinvaux PA (1989) A 6000-year history of Amazonian maize cultivation. Nature 340(6231):303–305Google Scholar
  36. Callen EO (1967) Analysis of the Tehuacan coprolites. In: DS Byers (ed) The prehistory of the Tehuacan Valley, vol. 1, Environment and subsistence. University of Texas Press, Austin, TX, pp. 261–89Google Scholar
  37. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480Google Scholar
  38. Camus-Kulandaivelu LC, Chevin LM, Tollon-Cordet C, Charcosset A, Manicacci D, Maud I (2008) Tenaillon patterns of molecular evolution associated with two selective sweeps in the Tb1–Dwarf8 region in Maize. Genetics 180:1107–1121Google Scholar
  39. Chandler-Ezell K, Pearsall DM, Zeidler JA (2006) Root and tuber phytoliths and starch grains document manioc (Manihot esculenta), arrowroot (Maranta arundinacea), and llerén (Calathea sp.) at Real Alto site, Ecuador. Econ Bot 60:103–120Google Scholar
  40. Chávez SJ, Thompson RG (2006) Early maize on the Copacabana peninsula: implications for the archaeology of Lake Titicaca basin. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 415–428Google Scholar
  41. Childe VG (1950) Prehistoric migrations in Europe. Instituttet for sammenlignende kulturforskning, Serie A: Forelesninger, 20. Harvard University Press, CambridgeGoogle Scholar
  42. Clement RM, Horn SP (2001) Pre-Columbian land-use history in Costa Rica: a 3000-year record of forest clearance, agriculture and fires from Laguna Zoncho. Holocene 11(4):419–426Google Scholar
  43. Coe MD (1994a) Mexico, 4th edn. Thames and Hudson, New YorkGoogle Scholar
  44. Collier D (1946) Archaeology of Ecuador. In JH Steward (ed) Handbook for South American Indians, vol 2, The Andean Civilizations. Bulletin 143, Bureau of American Ethnology, Smithsonian Institution. Washington DC, pp. 767–784Google Scholar
  45. Collier D, Murra JV (1943) Survey and excavations in Southern Ecuador. Field Museum of Natural History Publication 528, ChicagoGoogle Scholar
  46. Colinvaux P (1993) Pleistocene biogeography and diversity in tropical forests of South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, CT, pp 473–499Google Scholar
  47. Colinvaux PA, Bush MB (1991) The rain-forest ecosystem as a resource of hunting and gathering. Am Anthropol 93:153–160Google Scholar
  48. Colinvaux PA, De Oliveira PE, Moreno PE, Miller MC, Bush MB (1996a) A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–88Google Scholar
  49. Cook DE, Kovacevich B, Beach T, Bishop RL (2006) Deciphering the inorganic chemical record of ancient human activity using ICP-MS: a reconnaissance study of the late classic soil floors at Cancuén, Guatemala. J Archaeol Sci 33:628–640Google Scholar
  50. Cutler HC (1952) A preliminary survey of plant remains of tularosa cave. In: Martin PS, Rinaldo JB, Bluhm E, Cutler HC, Grange R Jr (eds) Mogollon cultural continuity and change. The stratigraphic analysis of tularosa and cordova caves, Fieldiana: Anthropology 40. Field Museum of Natural History Museum, Chicago, pp 461–479Google Scholar
  51. Cutler HC, Whitaker TW (1967). Curcurbits from the Tehuacan Caves. In: DS Byers (ed) The prehistory of the Tehuacán valley, vol. 1, Environment and subsistence. University of Texas Press, Austin TX, pp 212–219Google Scholar
  52. Dahlin BH, Ardren T (2002) Modes of exchange and regional patterns: chunchucmil, Yucatan. In: Masson MA, Freidel DA (eds) Ancient Maya political economies. Altimira, New York, pp 249–284Google Scholar
  53. Dahlin BH, Jensen CT, Terry RT, Wright DR, Beach T, Magnoni A (2007) In search of an ancient Maya Market. Lat Am Antiq 18(4):363–384Google Scholar
  54. Dahlin BH, Blair D, Beach T, Moriarty T, Terry R (2009) The dirt on food: ancient feasts and markets among the Lowland Maya. In: Staller JE, Carrasco MD (eds) Pre-Columbian foodways: interdisciplinary approaches to food, culture and markets in Mesoamerica. Springer, New York, pp 191–232Google Scholar
  55. Davidson JR (1981) El Spondylus en la cosmología chimú. Revista del Museo Nacional 45:75–87Google Scholar
  56. DeBoer WR (2003) Ceramic assemblage variability in the formative of Ecuador and Peru. In: Raymond JS, Burger RL (eds) Archaeology of formative Ecuador. Dumbarton Oaks Research Library and Collections, Washington D.C, pp 289–336Google Scholar
  57. DeNiro MJ (1987) Stable isotopy and archaeology. Am Sci 75:182–191Google Scholar
  58. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351Google Scholar
  59. DeNiro MJ, Schoeninger MJ (1983) Stable carbon and nitrogen isotope ratios of bone collagen: variations within individuals, between sexes, and within populations raised on monotonous diets. J Archaeol Sci 10:199–203Google Scholar
  60. Doebley JF (1994) Morphology, molecules, and maize. In: Johannessen S, Hastorf CA (eds) Corn and culture in the prehistoric New World. Westview Press, Boulder, CO, pp 101–112Google Scholar
  61. Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082Google Scholar
  62. Doebley JF, Wang RL (1997) Genetics and the evolution of plant form: an example from maize. Cold Spring Harb Symp Quant Biol 62:361–367Google Scholar
  63. Doebley JF, Goodman MM, Stuber CW (1983) Isozyme variation in maize from the Southwestern United States: taxonomic and anthropological implications. Maydica 28:97–120Google Scholar
  64. Doebley J, Renfroe W, Blanton A (1987) Restriction site variation in the Zea chloroplast genome. Genetics 117:139–147Google Scholar
  65. Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci USA 87:9888–9892Google Scholar
  66. Doebley JF, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488Google Scholar
  67. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321Google Scholar
  68. Dorweiler JE (1996) Genetic and evolutionary analysis of glume development in maize and teosinte. Ph.D. Dissertation, University of Minnesota. University of Michigan Microfilms, Ann ArborGoogle Scholar
  69. Dorweiler JE, Doebley J (1997) Developmental analysis of Teosinte Glume Architecture1: a key lucus in the evolution of maize (POACEAE). Am J Bot 84(10):1313–1322Google Scholar
  70. Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:233–235Google Scholar
  71. Dull R (2006) The maize revolution: a view from El Salvador. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 357–365Google Scholar
  72. Dull R (2007) Evidence for forest clearance, agriculture, and human-induced erosion in Precolumbian El Salvador. Ann Assoc Am Geogr 97(1):127–141Google Scholar
  73. Estrada VE, Meggers BJ, Evans C Jr (1964) The Jambelí culture of South Coastal Ecuador. In: Proceedings of the U.S. National Museum, vol. 115 (3492). Smithsonian Institution Press, Washington DC, pp. 483–558Google Scholar
  74. Ericson JE (1985) Strontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14:503–514Google Scholar
  75. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut BS (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95:4441–4446Google Scholar
  76. Evershed RP, Heron C, Charters S, Goad LJ (1992) The survival of food residues: new methods of analysis, interpretation and application. In: Mark Pollard A (ed) New developments in archaeological science. Oxford University Press, New York, pp 187–208Google Scholar
  77. Ferdon EN Jr (1950) The climates of Ecuador. In: Studies in Ecuadorian geography. School of American Research and Museum of New Mexico Bulletin 15, pp. 35–63Google Scholar
  78. Fernández FG, Terry RE, Inomata T, Eberl M (2002) An ethnoarchaeological study of chemical residues in the floors and soil of Q’eqchi’ Maya Houses at Las Pozas, Guatemala. Geoarchaeol Int J 17:487–519Google Scholar
  79. Finucane BC (2009) Maize and sociopolitical complexity in the Ayacucho valley, Peru. Curr Anthropol 50(4):535–545Google Scholar
  80. Flannery KV (1969) Origins and ecological effects of early domestication in Iran and the Near East. In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 73–100Google Scholar
  81. Flannery KV (1972a) The origins of the village as a settlement type in Mesoamerica and the Near East: a comparative study. In: Ucko PJ, Tringham R, Dimbleby GW (eds) Man, settlement and urbanism. Schenkman Publishing, Cambridge, MA, pp 23–54Google Scholar
  82. Flannery KV (1973) The origins of agriculture. Annu Rev Anthropol 2:271–310Google Scholar
  83. Flannery KV (1986a) The research problem. In: Flannery KV (ed) Guilá Naquitz: archaic foraging and early agriculture in Oaxaca. Academic, San Diego, CA, pp 1–18Google Scholar
  84. Ford J (1969) A comparison of formative of cultures in the Americas, vol II, Smithsonian contributions in anthropology. Smithsonian Institution, Washington, DCGoogle Scholar
  85. Ford RI (1985a) Processes of food production in North America. In: Ford RI (ed) Prehistoric food production in North America, Anthropological Papers No. 75. Museum of Anthropology, University of Michigan, Ann Arbor, MI, pp 341–364Google Scholar
  86. Ford RI (1985b) Processes of food production in North America. In: Ford RI (ed) Prehistoric food production in North America, Anthropological Papers No. 75. Museum of Anthropology, University of Michigan, Ann Arbor, MI, pp 1–19Google Scholar
  87. Freitas FO, Brendel G, Allaby RG, Brown TA (2003) DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. J Archaeol Sci 31:901–908Google Scholar
  88. Freiwald CR (2009) Dietary diversity in the upper Belize river Valley: a zoo archaeological and isotopic perspective. In: Staller JE, Carrasco MD (eds) Pre-Columbian foodways: interdisciplinary approaches to food, culture and markets in Mesoamerica. Springer, New York, pp 399–420Google Scholar
  89. Fritz GJ (1994) Are the first American farmers getting younger? Curr Anthropol 35:305–309Google Scholar
  90. Galinat WC (1985) Domestication and diffusion of maize. In: Ford RI (ed) Prehistoric food production in North America, Anthropology Papers 75. University of Michigan, Ann Arbor, MIGoogle Scholar
  91. Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pe ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432(2):630–635Google Scholar
  92. Gebauer AB, Price TD (eds) (1992) Transitions to agriculture in prehistory. Monographs in World Archaeology No. 4. Prehistory Press, Madison, WIGoogle Scholar
  93. Gil AF, Tykot RH, Neme G, Shelnut NR (2006) Maize on the frontier; Isotopic and macrobotanical data from central-western Argentina. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 199–214Google Scholar
  94. Goman M, Byrne R (1998) A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8(1):83–89Google Scholar
  95. Harlan JR (1975) Crops and man. American Society of Agronomy, Madison, WIGoogle Scholar
  96. Harris DR (1972) The origins of agriculture in the tropics. Am Sci 60(2):180–193Google Scholar
  97. Harris DR (1989) An evolutionary continuum of people-plant interaction. In: Harris DR, Hillman G (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 11–26Google Scholar
  98. Hart JP, Thompson RG, Brumbach HJ (2003) Phytolith evidence for early maize (Zea Mays) in the Northern Finger Lakes region of New York. Am Antiq 68(4):619–640Google Scholar
  99. Hart JP, Brumbach HJ, Lusteck R (2007a) Extending the phytolith evidence for early maize (Zea mays ssp. mays) and squash (Cucurbita sp.) in central New York. Am Antiq 72:563–583Google Scholar
  100. Haslam M (2004) The decomposition of starch grains in soils: implications for archaeological residue analysis. J Archaeol Sci 31:1715–1734Google Scholar
  101. Hastorf CA (1999) Recent research in paleoethnobotany. J Archaeol Res 7(1):55–103Google Scholar
  102. Hastorf CA, DeNiro MJ (1985) New isotopic method used to reconstruct prehistoric plant production and cooking processes. Nature 315:489–491Google Scholar
  103. Hastorf CA, Whitehead WT, Bruno MC, Wright M (2006) The movements of maize into the middle horizon tiwanaku, Bolivia. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, pp 429–448Google Scholar
  104. Hatch MD, Slack CR (1966) Photosynthesis by sugarcane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochem J 101:103–111Google Scholar
  105. Heiser C (1988) Aspects of unconscious selection and the evolution of domesticated plants. Euphytica 37:77–85Google Scholar
  106. Heron C, Evershed R, Goad L (1991) Effects of migration of soil lipids on organic residues associated with buried potsherds. J Archaeol Sci 18:641–659Google Scholar
  107. Hillman GC (1996) Late Pleistocene changes in wild plant-foods available to hunters and gatherers in the Fertile Crescent. Possible preludes to cereal cultivation. In: Harris DR (ed) The origins and spread of agriculture and pastorialism in Eurasia. Smithsonian Institution Press, Washington D.C, pp 159–203Google Scholar
  108. Hillman GC, Davies MS (1990) Measured domestication rates in crops of wild type wheats and barley and their archaeological implications. World Prehistory 4:157–222Google Scholar
  109. Hillman GC, Davies MS (1992) Domestication rate in wild wheats and barley under primitive cultivation: Preliminary results and archaeological implications of field measurements of selection coefficient. In: Anderson PC (ed) Prehistoire de I'Agriculture: Nouvelles Approches Expérimentales et Ethnographiques, vol Monographic du CRA No.6. Centre National de la Recherche Scicntifque, Paris, pp 114–158Google Scholar
  110. Hillman GC, Colledge SM, Harris DR (1989) Plant-food economy during the Epipalaeolithic period at Tell Abu Hureyra, Syria: Dietary diversity, seasonality, and modes of exploitation. In: Harris DR, Hillman G (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 240–268Google Scholar
  111. Hocquenghem AM (1991) Frontera entre “Areas Culturales” nor y centro Andinas en los valles y la costa del extremeo norte Peruano. Bulletin de l’Institut Français d’Etudes Andines 20(2):309–348Google Scholar
  112. Hocquenghem AM (1993) Rutas de entrada del mullu en el extremo norte del Perú. Bulletin del ’Institut Français d’Etudes Andines 22(3):701–719Google Scholar
  113. Hocquenghem AM, Idrovo J, Kaulicke P, Gomis D (1993) Bases del intercambio entre las sociedades norperuanas y surecuadorianas: una zona de transición entre 1500 A.C. and 600 D.C. Bulletin de l’Institut Français d’Etudes Andines 22(2):443–466Google Scholar
  114. Hodell DA, Quinn RL, Brenner M, Kamenov G (2004) Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: a tool for tracking ancient human migration. J Archaeol Sci 31:585–601Google Scholar
  115. Holm O (1980) La Cultura Chorrera Formativo Tardio Apr 1500 – 500 a.C. Museo Antropológico Banco Central del Eucador, Guayaquil, Ilustre Concejo Municipal de San Lorenzo de Vinces, y colegio Fiscal “10 de Agosto” Guayaquil. EcuadorGoogle Scholar
  116. Holst I, Moreno JE, Piperno DR (2007) Identification of teosinte, maize, and tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proc Natl Acad Sci USA 104(45):17608–17631Google Scholar
  117. Howie L, White CD, Longstaffe FJ (2009) Potographies and biographies: the role of food in ritual and identity as seen through life histories of selected Maya pots and people. Precolumbian foodways: interdisciplinary approaches to food, culture and markets in Mesoamerica. Springer, New York, pp 369–398Google Scholar
  118. Horn SP (2006) Pre-Columbian maize agriculture in Costa Rica: pollen and other evidence from Lake and Swamp Sediments. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 368–380Google Scholar
  119. Horn S, Kennedy LM (2001) Pollen evidence of maize cultivation 2700 b.p. at LaGoogle Scholar
  120. Iltis HH (2000) Homeotic sexual translocations and the origin of maize (Zea mays, Poaceae): a new look at an old problem. Econ Bot 54(1):7–42Google Scholar
  121. Iltis HH (2006) Polystichy in Maize. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 21–53Google Scholar
  122. Iltis HH, Benz BF (2000) Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. Novon 10:382–390Google Scholar
  123. Iltis HH, Doebley JF (1980) Taxonomy of Zea (Gramineae). II. Sub-specific categories in the Zea mays complex and a generic synopsis. Am J Bot 67:994–1004Google Scholar
  124. Islebe GA, Hooghiemstra H, Brenner M, Curtis JH, Hodell DA (1996) A Holocene vegetation history from lowland Guatemala. Holocene 6:265–271Google Scholar
  125. Jaenicke-Després V, Buckler ES, Smith BD, Gilbert TM, Cooper A, Doebley J, Pääbo S (2003) Early allelic selection in maize as revealed by ancient DNA. Science 302:1206–1208Google Scholar
  126. Jaenicke-Després V, Smith BD (2006) Ancient DNA and the integration of archaeological and genetic approaches to the study of maize domestication. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 83–95Google Scholar
  127. Jakes KA (ed) (2002) Archaeological chemistry: materials, methods and meaning. American Chemical Society, Washington, DCGoogle Scholar
  128. Johnson F, MacNeish RS (1972) Chronometric dating. In: Johnson F (ed) The prehistory of the Tehuacán valley, vol 4, Chronology and Irrigation. University of Texas Press, Austin, TX, pp 3–58Google Scholar
  129. Katzenberg MA (2000) Stable isotope analysis: a tool for studying past diet, demography, and life history. In: Katzenberg MA, Saunders SR (eds) Biological anthropology of the human skeleton. Wiley-Liss, New York, pp 305–328Google Scholar
  130. Kaplan L (1967) Archaeological Phaseolus from Tehuacan. In: Byers DS (ed) The prehistory of the Tehuacán valley, vol 1, Environment and subsistence. University of Texas Press, Austin, p 201Google Scholar
  131. Kelly ER, Marino AB, DeNiro MJ (1991) Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Res 35:222–233Google Scholar
  132. Kelly RL (1995) The foraging spectrum: diversity in hunter-gatherer lifeways. Smithsonian Institution Press, Washington, DCGoogle Scholar
  133. Kirkby MJ, Whyte AV, Flannery KV (1986) The physical environment of the Guilá Naquitz cave group. In: Flannery KV (ed) Guilá Naquitz: archaic foraging and early agriculture in Oaxaca. Academic, San Diego, CA, pp 43–62Google Scholar
  134. Kolodny K, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites. Earth Planet Sci Lett 64:398–404Google Scholar
  135. Laden G (2006) Toward a biologically based method of phytolith classification. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 123–128Google Scholar
  136. Lathrap DW (1970) Upper amazon. Thames and Hudson, LondonGoogle Scholar
  137. Lathrap DW, Collier D, Chandra H (1975) Ancient Ecuador culture, clay, and creativity 3000–300 BC. Field Museum of Natural History, ChicagoGoogle Scholar
  138. Letts J, Evans J, Fung MG, Hillman C (1994) A chemical method of identifying charred plant remains using infra-red spectroscopy. In: Johannessen S, Hastorf CA (eds) Corn and culture in the prehistoric New World. Westview Press, Boulder, pp 64–89Google Scholar
  139. Lewis HT (1972) The role of fire in the domestication of plants and animals in Southwest Asia. Man 7(2):195–222Google Scholar
  140. Long A, Fritz GJ (2001) Validity of AMS dates on maize from the Tehuacán Valley: a comment on MacNeish and Eubanks. Lat Am Antiq 12:87–90Google Scholar
  141. Long A, Benz BF, Donahue DJ, Jull AJT, Toolin LJ (1989) First direct AMS dates on early maize from Tehuacán, Mexico. Radiocarbon 31(3):1035–1040Google Scholar
  142. Lunniss R (2008) Where the land and ocean meet: the Engoroy phase ceremonial site at Salango, Ecuador. In: Staller JE (ed) Pre-Columbian landscapes of creation and origin. Springer, New York, pp 203–248Google Scholar
  143. Lusteck R (2006) The migrations of maize into the Southeastern United States. In: Staller JE, Tykot RH, Benz BF (eds) Histories of maize: multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CAGoogle Scholar
  144. Luz B, Kolodny Y, Horowitz M (1984) Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim Cosmochim Acta 48:1689–1693Google Scholar
  145. MacNeish RS (1947) Preliminary report on coastal Tamaulipas, Mexico. Am Antiq 13:1–15Google Scholar
  146. MacNeish RS (1961) First Annual Report of the tehuacan archaeological-botanical project. Publication of the Robert S, Peabody Foundation for Archaeology Phillips Academy, Andover, MAGoogle Scholar
  147. MacNeish RS (1967a) Introduction. In: Byers DS (ed) The prehistory of the Tehuacán valley, vol 1, Environment and subsistence. University of Texas Press, Austin, pp 1–13Google Scholar
  148. MacNeish RS (1967b) An interdisciplinary approach to an archaeological problem. In: Byers DS (ed) The Prehistory of the Tehuacán Valley, vol 1, Environment and subsistence. University of Texas Press, Austin, pp 14–24Google Scholar
  149. MacNeish RS (1978) The Science of Archaeology? Duxbury Press, North Scituate, MAGoogle Scholar
  150. MacNeish RS (1985) The archaeological record on the problem of the domestication of corn. Maydica 30:171–178Google Scholar
  151. MacNeish RS (1992) The origins of agriculture and settled life. University of Oklahoma Press, NormanGoogle Scholar
  152. MacNeish RS, Cook A, Lumbreras L, Vierra R, Nelken-Terner A (1981) Prehistory of the Ayacucho Basin, Peru, vol 2. University of Michigan Press, Ann ArborGoogle Scholar
  153. Mangelsdorf PC (1974) Corn: its origin evolution and improvement. The Belknap Press of Harvard University, CambridgeGoogle Scholar
  154. Mangelsdorf PC, Reeves RG (1939) The origin of Indian corn and its relatives. Texas Agricultural Experiment Station. Bulletin No. 547 College Station, Texas.Google Scholar
  155. Mangelsdorf PC, MacNeish RS, Galinat WC (1967) Prehistoric wild and cultivated maize. In: Byers DS (ed) The prehistory of the Tehuacán valley, vol 1, Environment and Subsistence. University of Texas Press, Austin, pp 178–200Google Scholar
  156. Mangelsdorf PC, Barghoorn ES, Banerjee UC (1978) Fossil pollen and the origin of corn. Bot Mus Lealf Harv Univ 26:238–255Google Scholar
  157. Manzanilla L (1987) Cobá. Análisis De Dos Unidades Habitacionales Mayas. Universidad Nacional Autónoma de México, Mexico, Quintana RooGoogle Scholar
  158. Manzanilla L, Barba L (1990) The study of activities in classic households: two case studies from Cobá and Teotihuacán. Anc Mesoamerica 1:41–49Google Scholar
  159. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084Google Scholar
  160. Meggers BJ (1966) Ecuador. Ancient peoples and places series 49, edited by Glynn Daniel. Praeger Publication, NewYorkGoogle Scholar
  161. Meggers BJ, Evans C Jr, Estrada VE (1965) Early formative of Coastal Ecuador: the valdivia and machalilla phases. Smithsonian Contributions in Anthropology, vol. 1. Washington DCGoogle Scholar
  162. Monsalve J (1985) A pollen core from the Hacienda Lusitania. In: Bray W (ed) Pro Calima: Archälogische-ethnologisches Projekt im Westlichen Columbien/Sudamerika No. 5. Vereingung Pro Calima, Bern, pp 40–44Google Scholar
  163. Morton JD, Schwarcz HP (2004) Palaeodietary implications from stable isotopic analysis of residues on prehistoric Ontario ceramics. J Archaeol Sci 31(5):503–517Google Scholar
  164. Mulholland S, Rapp G (1992) A morphological classification of grass silica bodies. In: Rapp G Jr, Mulholland SC (eds) Phytolith Systematics: Emerging Issues, vol 1, Advances in archaeological and museum science. Plenum Press, New YorkGoogle Scholar
  165. Murra JV (1975 [1972]) El control vertical de un máximo de pisos ecológicos en los sociedades andinas. In: Murra JV (ed) Formaciones Económicas y Politicas del Mundo Andino. Instituto de Estudios Peruanos, Lima, pp 59–115Google Scholar
  166. Neff H, Arroyo B, Jones JG, Pearsall DM, Freidel, D. E. 2002. Nueva evidencia pertinente a la ocupación temprana del sur de Mesoamérica. Paper Presented at the XII Encuentro Internacional: Los Investigadores de la Cultura Maya, Campeche, November 10-14, 2002. University of Campeche, MexicoGoogle Scholar
  167. Niederberger C (1979) Early sedentary economy in the basin of Mexico. Science 203:131–142Google Scholar
  168. Ortiz A, Barba L (1993) La Química En Los Estudios De Áreas De Actividad. In: Manzanilla L (ed) Anatomia De Un Conjunto Residencial Teotihuacano En Oztoyahualco, vol 2. Universidad Nacional Autónoma de México, Mexico D.F, pp 617–660Google Scholar
  169. Parker PL (1964) The biochemistry of the stable isotope fractionation during photosynthesis. Geochim Cosmochim Acta 28:1155–1164Google Scholar
  170. Parker III TA, Carr JL (eds) (1992) Status of Forest Remnants in the Cordillera de la Costa and Adjacent Areas of Southwestern Ecuador Rapid Assessment Program (RAP Working Papers 2) Conservation International October 1992Google Scholar
  171. Parnell JJ, Terry RE, Golden G (2001) The use of in-field phosphate testing for the rapid identification of Middens at Piedras Negras, Guatemala. Geoarchaeol Int J 16:855–873Google Scholar
  172. Parnell JJ, Terry RE, Nelson Z (2002a) Soil chemical analysis applied as an interpretive tool for ancient human activities at Piedras Negras, Guatemala. J Archaeol Sci 29:379–404Google Scholar
  173. Parsons JR (2006) The last pescadores of chimalhuacán, mexico: an archaeological ethnography. Anthropological Papers Museum of Anthropology, University of Michigan, Ann Arbor, MI, Number 96Google Scholar
  174. Paulsen AC (1974) The Thorny Oyster and the voice of God: Spondylus and Strombus in Andean Prehistory. Am Antiq 39(4):597–607Google Scholar
  175. Pearsall DM (1978) Phytolith analyses of archaeological soils: Evidence of maize cultivation in Formative Ecuador. Science 199:177–178Google Scholar
  176. Pearsall DM (1979) The application of ethnobotanical techniques to the problem of subsistence in the Ecuadorian formative. Ph.D. dissertation, Department of Anthropology, University of Illinois, UrbanaGoogle Scholar
  177. Pearsall DM (1989) Paleoethnobotany: a handbook of procedures. Academic, San Diego, CAGoogle Scholar
  178. Pearsall DM (1992) The origins of plant cultivation in South America. In: C. Wesley Cowan, Patty Jo Watson, with the assistance of N. L. Benco (eds) The origins of agriculture: an International perspective. Smithsonian Institution Press, Washington DC, pp. 173–205Google Scholar
  179. Pearsall DM (1994) Issues in the analysis and interpretation of archaeological maize in South America. In: Johannesson S, Hastorf CA (eds) Corn and Culture in the Prehistoric New World. Westview Press, Boulder, pp 245–272Google Scholar
  180. Pearsall DM (1999) The impact of maize on subsistence systems in South America: an example from the Jama River Valley, Coastal Ecuador. In: Gosden C, Hather J (eds) The prehistory of food: appetites for change. Routledge, London, pp 419–437Google Scholar
  181. Pearsall DM (2000) Paleoethnobotany: a handbook of procedures, 2nd edn. Academic, San Diego, CAGoogle Scholar
  182. Pearsall DM (2003) Plant food resources of the ecuadorian formative: an overview and comparison to the central andes. In: Raymond JS, Burger RL (eds) Archaeology of formative ecuador: a symposium at Dumbarton Oaks, 7 and 8 October 1995. Dumbarton Oaks Research Library and Collection, Washington D.C, pp 213–257Google Scholar
  183. Pearsall DM, Piperno DR (1990) Antiquity of maize cultivation in Ecuador: summary and reevaluation of the evidence. Am Antiq 55:324–337Google Scholar
  184. Pearsall DM, Piperno DR (1993) The nature and status of phytolith analysis. In: Pearsall DM, Piperno DR (eds) Current research in phytolith analysis: applications in archaeology and paleoecology. MASCA, University of Pennsylvania Museum, Philadelphia, pp 9–18Google Scholar
  185. Pearsall DM, Chandler-Ezell K, Chandler-Ezell A (2003) Identifying maize in Neotropical sediments and soils using cob phytoliths. J Archaeol Sci 30:611–627Google Scholar
  186. Perry L, Sandweiss DH, Piperno DR, Rademaker K, Malpass MA, Umire A, Vera P, Umire A (2006) Early maize agriculture and interzonal interaction in southern Peru. Nature 440(2):76–79Google Scholar
  187. Pillsbury J (1996) The Thorny Oyster and the origins of Empire: implications of recently uncovered Spondylus imagery from Chan Chan, Peru. Lat Am Antiq 7(4):313–340Google Scholar
  188. Piperno DR (1984) A comparison and differentiation of phytoliths from maize (Zea mays L.) and wild grasses: use of morphological criteria. Am Antiq 49:361–383Google Scholar
  189. Piperno DR (1985) Phytolithic analysis of geological sediments from Panama. Antiquity 59:13–19Google Scholar
  190. Piperno DR (1988) Phytolith analysis: an archaeological and geological perspective. Academic, San Diego, CAGoogle Scholar
  191. Piperno DR (1991) The status of phytolith analysis in the American tropics. J World Prehistory 5(2):155–191Google Scholar
  192. Piperno DR (1994) On the emergence of agriculture in the New World. Curr Anthropol 35(5):637–643Google Scholar
  193. Piperno DR, Holst I, Ranere AJ, Hansell P, Stothert K (2001) The occurrence of genetically controlled phytoliths from maize cobs and starch grains from maize kernels on archaeological stone tools and human teeth, and in archaeological sediments from southern Central America and Northern South America. Phytolith Bull Soc Phytolith Res 13(2&3):1–7Google Scholar
  194. Piperno DR (2006) Phytoliths: a comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham MDGoogle Scholar
  195. Piperno DR, Flannery KV (2001) The earliest archaeological maize (Zea mays L.) from highland Mexico: new accelerator mass spectrometry dates and their implications. Proc Natl Acad Sci USA 98:2101–2103Google Scholar
  196. Piperno DR, Jones JG (2003) Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene Record of vegetation and climate from the Pacific Coastal plain of Panama. Quaternary Res 59:79–87Google Scholar
  197. Piperno DR, Pearsall DM (1993) Phytoliths in the reproductive structures of maize and teosinte: Implications for the study of maize evolution. J Archaeol Sci 17:665–677Google Scholar
  198. Piperno DR, Pearsall D (1998) The origins of agriculture in the lowland neotropics. Academic, San Diego, CAGoogle Scholar
  199. Piperno DR, Bush MB, Colinvaux PA (1990) Paleoenvironments and human occupation in late-glacial Panama. Quaternary Res 33:108–116Google Scholar
  200. Piperno DR, Clarey KH, Cooke RG, Ranere AJ, Weiland D (1985) Preceramic maize in central Panama: Phytolith, Pollen evidence. Am Anthropol 87:871–878Google Scholar
  201. Piperno DR, Ranere AJ, Moreno JE, Iriarte J, Holst I, Lachniet M (2004) Preliminary results of investigations into maize history in the central Balsas watershed. Paper presented at an invited symposium, “The Stories of Maize I-IV.” Organized by John P. Hart, Michael Blake, John E. Staller, and Robert G. Thompson at the 69th Annual Meeting of the Society for American Archaeology, Montreal, CanadaGoogle Scholar
  202. Piperno DR, Ranere AJ, Moreno JE, Iriarte J, Holst I, Lachniet M, Jones JG, Ranere AJ, Castanzo R (2007) Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico. Proc Natl Acad Sci USA 104:11874–11881Google Scholar
  203. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5019–5024Google Scholar
  204. Pohl MED, Pope KO, Jones JG, Jacob J, Piperno D, de France S, Lentz DL, Gifford J, Danforth M, Josserand JK (1996) Early agriculture in the Maya Lowlands. Lat Am Antiq 7(4):355–372Google Scholar
  205. Pohl MED, Piperno DR, Pope KO, Jones JG (2007) Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Andrés, Tabasco, Mexico. Proc Natl Acad Sci USA 104:6870–6875Google Scholar
  206. Pope KO, Dahlin BH (1989) Ancient Maya wetland agriculture: new insights from ecological and remote sensing research. J Field Archaeol 16:87–106Google Scholar
  207. Pope KO, Pohl M, Jones JG, Lentz DL, von Nagy C, Varga FJ, Quitmyer IR (2001) Origin and environmental settings of ancient agriculture in the Lowlands of Mesoamerica. Science 292:1370–1373Google Scholar
  208. Price TD, Manzanilla L, Middleton WD (2000) Immigration and the ancient city of Teotihuacan in Mexico: a study using strontium isotope ratios in human bone and teeth. J Archaeol Sci 27:903–913Google Scholar
  209. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135Google Scholar
  210. Rahman A, Wong K, Jane J, Myers AM, James MG (1998) Characterization of SU1 isoamylase, a determinant of storage starch structure in maize. Plant Physiol 117:425–435Google Scholar
  211. Ranere AJ, Piperno DR, Holst I, Dickau R, Iriarte J (2009) The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico. Proc Natl Acad Sci USA 106:5014–5018Google Scholar
  212. Ransom SL, Thomas M (1960) Crassulacean acid metabolism. Annu Rev Plant Physiol 11:81–110Google Scholar
  213. Raynor GS, Ogden EC, Hayes KV (1972) Dispersion and deposition of corn pollen from experimental sources. Agron J 64:420–427Google Scholar
  214. Reber EA (2006) Hard row to hoe: changing maize use in the American bottom and surrounding areas. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, pp 236–248Google Scholar
  215. Reber EA, Evershed RP (2004) Identification of maize in absorbed organic residues: a cautionary tale. J Archaeol Sci 31:399–410Google Scholar
  216. Reber EA, Dudd SN, van der Merwe NJ, Evershed RP (2004) Direct detection of maize processing in archaeological pottery through compound-specific stable isotope analysis of n-dotriacontanol in absorbed organic residues. Antiquity 78(301):682–691Google Scholar
  217. Redman CL (1999) Human impacts on ancient environments. University of Arizona Press, TucsonGoogle Scholar
  218. Rindos D (1984) The origins of agriculture; an evolutionary perspective. With forward by R.C. Dunnell. Academic, OrlandoGoogle Scholar
  219. Rose F (2008) Intra-community variation in diet during the adoption of a new staple crop in the Eastern Woodlands. Am Antiq 73(3):413–439Google Scholar
  220. Rossen J, Dillehay TD, Ugent D (1996) Ancient cultigens or modern intrusions? Evaluating plant remains in an Andean case study. J Archaeol Sci 23:391–407Google Scholar
  221. Rouse I, Cruxent JM (1963) Venzuelan Archaeology. Yale University Press, New HavenGoogle Scholar
  222. Roush W (1997) Squash seeds yield new view of early American farming. Science 276(5314):894–895Google Scholar
  223. Rovner I (1971) Potential of opal Phytoliths for use in Paleoecological reconstruction. Quaternary Res 1:343–359Google Scholar
  224. Rovner I (1983) Plant Opal Phytolith Analysis: Major Advances in Archaeobotanical Research. In: Schiffer M (ed) Advances in archaeological method and theory, vol 6. Academic, New York, pp 225–266Google Scholar
  225. Rovner I (1995) Mien, mean, and meaning. The limits of typology in phytolith analysis. Paper presented at the 60th Annual Meetings of the Society for American Archaeology, Minneapolis, Minn.Google Scholar
  226. Rovner I (2004) On transparent blindfolds: comments on identifying maize in Neotropical sediments and soils using cob phytoliths. J Archaeol Sci 31:815–819Google Scholar
  227. Rovner I, Gyuli F (2007) Computer-assisted morphometry: a new method for assessing and distinguishing morphological variation in wild and domestic seed populations. Econ Bot 61(2):154–172Google Scholar
  228. Rovner I, Russ J (1992) Darwin and design in phytolith systematics: morphometric methods for mitigating redundancy. In: Rapp GR Jr, Mulholland SC (eds) Phytolith systematics: emerging issues, vol 1, Advances in Archaeological and Museum Science. Plenum Press, New York, pp 253–276Google Scholar
  229. Russ JC, Rovner I (1989) Stereological identification of opal phytolith populations from wild and cultivated zea. Am Antiq 54:784–792Google Scholar
  230. Rue DJ (1989) Archaic Middle American agriculture and settlement: recent pollen data from Honduras. J Field Archaeol 16(2):177–184Google Scholar
  231. Rust WF, Leyden BW (1994) Evidence of maize use at Early and Middle Preclassic La Venta Olmec sites. In: Johannessen S, Hastorf CA (eds) Corn and Culture in the Prehistoric New World. Westview Press, Boulder, CO, pp 181–202Google Scholar
  232. Sage RF, Wedin DA, Meirong L (1999) The Biogeography of C4 Photosynthesis: Patterns and Controlling Factors. In: Sage RF, Monson RK (eds) C4 Plant Biology. Academic, San Diego, CA, pp 313–371Google Scholar
  233. Sauer CO (1950) Cultivated plants of South and Central America. In: Steward JH (ed.) Handbook of South American Indians. Physical Anthropology, Linguistics and Cultural Geography of South American Indians, vol. 6. Smithsonian Institution Bureau of American Ethnology Bulletin 143. U.S. Government Printing Office, Washington DC, pp 487–543Google Scholar
  234. Sauer CO (1952) Agricultural origins and dispersals. American Geographic Society, New YorkGoogle Scholar
  235. Schoeninger MJ, Kohn MJ, Valley JW (2000) Tooth oxygen isotope ratios as paleoclimate monitors in arid ecosystems. In: Ambrose SH, Katzenberg MA (eds) Biogeochemical approaches to paleodietary analysis. Plenum, New York, pp 117–140Google Scholar
  236. Schoenwetter J, Smith LD (1986) Pollen analysis of the oaxaca archaic. In: Flannery KV (ed) Guilá Naquitz, Archaic Foraging and early agriculture in Oaxaca, Mexico. Academic, Orlando, pp 179–218Google Scholar
  237. Schwarcz HP (2006) Stable carbon isotope analysis and human diet: a synthesis. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 315–321Google Scholar
  238. Sluyter A (1997) Analysis of maize (Zea mays subsp. mays) pollen: normalizing the effects of microscopic – slide mounting media on diameter determinations. Palynology 21:35–39Google Scholar
  239. Sluyter A, Dominguez G (2006) Early maize (Zea mays L.) cultivation in Mexico: dating sedimentary pollen records and its implications. Proc Natl Acad Sci USA 103:1147–1151Google Scholar
  240. Smalley J, Blake TM (2003) Sweet beginnings: stalk sugar and the domestication of maize. Curr Anthropol 44(5):675–703Google Scholar
  241. Smith BD (1977) Archaeological inference and inductive confirmation. Am Anthropol 79(3):598–617Google Scholar
  242. Smith BD (1997a) The initial domestication of Curcurbita pepo in the Americas 10, 000 years ago. Science 276:932–934Google Scholar
  243. Smith BD (1998) The emergence of agriculture. Scientific American Library Publication. W. H. Freedman and Company, New YorkGoogle Scholar
  244. Smith BD (2000) Guilá Naquitz revisited: agricultural origins in Oaxaca, Mexico. In: Fienman G, Manzanilla L (eds) Cultural evolution, contemporary viewpoints. Plenum Press, New York, pp 15–59Google Scholar
  245. Smith BD (2001) Documenting plant domestication: the consilience of biological and archaeological approaches. Proc Natl Acad Sci USA 98:1324–1326Google Scholar
  246. Smith BD (2005a) Reassessing Coxcatlan cave and the early history of domesticated plants in Mesoamerica. Proc Natl Acad Sci USA 102:9438–9944Google Scholar
  247. Smith BD (2006) Documenting plants in the archaeological record. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Berkeley, pp 15–24Google Scholar
  248. Smith BD, Yarnell RA (2009) Initial formation of an indigenous crop complex in eastern North America at 3800 B.P. Proc Natl Acad Sci USA 106:6561–6566Google Scholar
  249. Smith CE Jr (1967) Plant remains. In: Byers DS (ed) The prehistory of the Tehuacán valley, vol 1, Environment and subsistence. University of Texas Press, Austin, TX, pp 220–255Google Scholar
  250. Smith CE Jr (1986) Preceramic plant remains from Guilá Naquitz. In: Flannery KV (ed) Guilá Naquitz: archaic foraging and early agriculture in Oaxaca. Academic, San Diego, CA, pp 265–274Google Scholar
  251. Spinden HJ (1917) The origin and distribution of agriculture in America. In: Proceedings of the19th International Congress of Americanists (1915), Washington DC, pp 269–276Google Scholar
  252. Staller JE (1994) Late Valdivia Occupation in El Oro Province Ecuador: Excavations at the Early Formative Period (3500-1500 B.C.) site of La Emerenciana, Ph.D. dissertation. Department of Anthropology, Southern Methodist University, Dallas, Texas. University Microfilms, Ann ArborGoogle Scholar
  253. Staller JE (2000) Political and prehistoric frontiers: How history influences our understanding of the past. In: Boyd M, Erwin JC, Hendrickson M (eds) The entangled past: integrating history and archaeology, pp. 242–258. Proceedings of the 30th Annual Chacmool Conference Calgary, Alberta. The Archaeological Association of The University of Calgary. Alberta, CanadaGoogle Scholar
  254. Staller JE (2001a) Reassessing the chronological and developmental relationships of the Formative of coastal Ecuador. J World Prehistory 15(2):193–255Google Scholar
  255. Staller JE (2003) An examination of the paleobotanical and chronological evidence for an early introduction of maize (Zea mays L.) into South America: a response to Pearsall. J Archaeol Sci 30(3):373–380Google Scholar
  256. Staller JE (2006a) An introduction to the histories of maize. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp xxi–xxvGoogle Scholar
  257. Staller JE (2007b) Un reevaluación del papel de la ideología en el intercambio de larga distancia temprano y a los orígenes de la civilización andina. In F. García (ed.) II Congreso Ecuatoriano de Antropologia y Arqueologia: Balance de la última década: aportes, retos y nuevos temas, pp. 511-548, Tomo 1. Abya Yala, QuitoGoogle Scholar
  258. Staller JE, Thompson RG (2000) Reconsiderando la Introdución del Maíz en el Occidente de America del Sur. Bulletin de l’Institut Français d’Etudes Andines 30(1):123–156. LimaGoogle Scholar
  259. Staller JE, Thompson RG (2002) A multidisciplinary approach to understanding the initial introduction of maize into coastal Ecuador. J Archaeol Sci 29(1):33–50Google Scholar
  260. Staller JE, Tykot RH, Benz BF (eds) (2006) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CAGoogle Scholar
  261. Stothert KE (1985) The preceramic Las Vegas culture of Coastal Ecuador. Am Antiq 50(3):613–637Google Scholar
  262. Terrell JE, Hart J, Barut S, Cellinese N, Curet A, Denham T, Kusimba C, Latinis K, Oka R, Palka J, Pohl M, Pope K, Williams P, Haines H, Staller JE (2003) Domesticated landscapes: the subsistence ecology of plant and animal domestication. J Archaeol Method Theor 10(4):323–367Google Scholar
  263. Terry RE, Fernández FG, Parnell JJ, Inomata T (2004) The Story in the floors: chemical signatures of ancient and modern Maya activities at Aguateca, Guatemala. J Archaeol Sci 31:1237–1250Google Scholar
  264. Thompson RG (2005) Phytolith analysis of food residues from coprolites and a pottery sherd recovered at Ramaditas, Chile. In: Rivera MA (ed) Arqueologia del Desierto de Atacoma: La Etopa Formativa en el Area de Ramaditas/Guatacondo. Ediciones Universidad Bolivarana, Santiago, pp 211–230Google Scholar
  265. Thompson RG (2006) Documenting the presence of maize in central and south america through phytolith analysis of food residues. In: Zeder MA, Bradley DG, Emshwiller E, Smith BD (eds) Documenting domestication: new genetic and archaeological paradigms. University of California Press, Berkeley, pp 82–95Google Scholar
  266. Thompson RG (2007) Tracing the movement of maize through the analysis of phytoliths recovered from food residues in prehistoric pottery. Ph.D. dissertation, Department of Anthropology, University of Minnesota, MinneapolisGoogle Scholar
  267. Thompson RG, Mulholland S (1994) The identification of corn in food residues on utilized ceramics at the Shea Site (32CS101). Phytolith News Lett 8(2):7–11Google Scholar
  268. Thompson RG, Kluth RA, Kluth DW (1995) Brainerd ware pottery function explored through opal phytolith analysis of food residues. Minn Archaeol 53:86–95Google Scholar
  269. Tuxill J, Reyes LA, Latournerie L, Cob V, Jarvis DI (2009) All maize is not equal: maize variety choices and mayan foodways in Rural Yucatan, Mexico. In: Staller JE, Carrasco MD (eds) Pre-Columbian foodways: interdisciplinary approaches to food, culture and markets in Mesoamerica. Springer, New York, pp 466–486Google Scholar
  270. Tykot RH (2002) Contributions of stable isotope analysis to our understanding dietary variation among the Maya. In: Jakes KA (ed) Archaeological chemistry: materials, methods and meaning. Washington D.C, American Chemical Society, pp 214–230Google Scholar
  271. Tykot RH (2006) Stable isotope analysis and human diet. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 131–142Google Scholar
  272. Tykot RH, Staller JE (2002) On the importance of early maize agriculture in coastal Ecuador: new data from the Late Valdivia Phase site of La Emerenciana. Curr Anthropol 43(4):666–677Google Scholar
  273. Tykot RH, van der Merwe NJ, Burger RL (2006) The importance of maize and marine foods to Initial Period/Early Horizon subsistence in highland and coastal Peru. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 187–197Google Scholar
  274. Ubelaker DH, Katzenberg MA, Doyon L (1995) Status and diet in precontact highland Ecuador. Am J Phys Anthropol 97:403–411Google Scholar
  275. Ubelaker DH, Bubniak Jones E (2002) Formative period human remains from coastal ecuador: La Emerenciana Site (OOSrSr-42). J of the Washington Academy of Sciences 88(2):59–72Google Scholar
  276. Ugent D (1994) Chemosystematics in archaeology: A preliminary study of the use of chromatography and spectrophotometry in the identification of four prehistoric root crop species from the desert coast of Peru. In: Hather JG (ed) Tropical archaeobotany: applications and new developments. Series on World Archaeology, New York, pp 215–226Google Scholar
  277. Ugent D, Pozorski S, Pozorski T (1984) New evidence for ancient cultivation of Canna edulis in Peru. Econ Bot 38:417–432Google Scholar
  278. van der Merwe NJ, Vogel JC (1978) 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276:815–816Google Scholar
  279. van der Merwe NJ (1982) Carbon isotopes, photosynthesis, and archaeology. Am Sci 70(1982):596–606Google Scholar
  280. van der Merwe NJ, Lee-Thorp JA, Raymond JS (1993) In: Lambert JB, Grup G (eds) Prehistoric human bone archaeology at the molecular level. Springer, New York, pp 63–97 Light, stable isotopes and the subsistence base of formative cultures at Valdivia, EcuadorGoogle Scholar
  281. Vierra BJ, Ford RI (2006) Early maize agriculture in the Río Grande Valley, New Mexico. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of maize. Elsevier, San Diego, CA, pp 497–510Google Scholar
  282. Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsouka Y, Doebley J (2002) Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci USA 99(15):9650–9655Google Scholar
  283. Villalba M (1988) Cotocollao. Miscelanea Antropógica Ecuatoriana 2. Quito, EcuadorGoogle Scholar
  284. Watson RA, Watson PJ (1969) In: Ucko PJ, Dimbleby GW (eds) The domestication and exploitation of plants and animals. Duckworth, London, pp 397–405 Early cereal cultivation in ChinaGoogle Scholar
  285. Weatherwax P (1954) Indian corn in Old America. MacMillan, New YorkGoogle Scholar
  286. Wellhausen EJ, Roberts LM, Hernandez X E (1952) Races of maize in Mexico; their origin, characteristics and distribution. In: collaboration with Paul C. Mangelsdorf. Bussey Institution of Harvard University, CambridgeGoogle Scholar
  287. Wells CE, Terry RE, Parnell JJ, Hardin PJ, Jackson MW, Houston SD (2000) Chemical analyses of ancient anthrosols in residential areas at Piedras Negras, Guatemala. J Archaeol Sci 27:449–462Google Scholar
  288. Whitaker TW, Cutler HC, MacNeish RS (1957) Curcurbit materials from the three caves near Ocampo, Tamaulipas. Am Antiq 22(4):352–358Google Scholar
  289. White C, Schwarcz HP (1989) Ancient Maya diet as inferred from isotopic and chemical analyses of human bone. J Archaeol Sci 16:451–474Google Scholar
  290. White CD, Spence MW, Longstaffe FJ, Law KR (2000) Testing the nature of Teotihuacán imperialism at Kaminaljuyú using phosphate oxygen-isotope ratios. J Anthropol Res 56:535–558Google Scholar
  291. White CD, Longstaffe FJ, Schwarcz HP (2006) Past and future directions for isotopic anthropology in mesoamerican maize research. In: Staller JE, Tykot RH, Benz BF (eds) Histories of Maize: Multidisciplinary approaches to the prehistory, linguistics, biogeography, domestication, and evolution of Maize. Elsevier, San Diego, CA, pp 143–159Google Scholar
  292. Whitehead DR, Langham EJ (1965) Measurement as a means of identifying fossil maize pollen. Bull Torrey Bot Club 92:7–20Google Scholar
  293. Whitehead DR, Sheehan MC (1971) Measurement as a means of identifying fossil maize pollen, II: the effect of slide thickness. Bull Torrey Bot Club 98:268–271Google Scholar
  294. Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES IV (2002) Genetic diversity and selection in the maize starch pathway. Proc Natl Acad Sci USA 99:12595–12562Google Scholar
  295. Wilkes HG (1989) Maize: domestication, racial evolution, and spread. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 440–455Google Scholar
  296. Willey GR, Sabloff JA (1980) A history of American archaeology. W. H. Freeman and Company, San FranciscoGoogle Scholar
  297. Wright HE Jr, Mann DH, Glasner PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659Google Scholar
  298. Wright SI, Vroh Bi I, Schroeder SI, Yamasaki M, Doebley JF, Mullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314Google Scholar
  299. Zohary D (2004) Unconscious selection and the evolution of domesticated plants. Econ Bot 58:5–10Google Scholar
  300. Zohary D, Hopf M (1993) Domestication of Plants in the Old World, 2nd edn. Oxford, Oxford University PressGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of AnthropologyThe Field MuseumChicagoUSA

Personalised recommendations