Advertisement

History of Speech Spectrum Analysis

  • Sean A. FulopEmail author
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

This chapter traces the history of sound (and in particular, speech) spectrum analysis from its very beginnings in the theory developed by Fourier in the early 1800s. A particular goal of this historical outline is to describe not just the events and developments through the years, but also the beliefs and attitudes of scientists as these changed with the development of a better understanding. Some of the scientists whose work is discussed here are still widely known and cited, while others’ contributions have been unjustly forgotten. With this chapter, I also hope to straighten out the historical record in this respect, giving all due credit to those pioneers who uncovered many facts about speech spectra that are now taken for granted.

Keywords

Vocal Cord Vocal Tract Absolute Pitch Vowel Sound Voice Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.S. Atal, M.R. Schroeder, Predictive coding of speech signals. in Proc. 1967 Conf. Commun. and Process (1967) pp. 360–361Google Scholar
  2. 2.
    C.G. Bell, H. Fujisaki, J.M. Heinz, K.N. Stevens, A.S. House, Reduction of speech spectra by analysis-by-synthesis techniques. J. Acoust. Soc. Am. 33(12), 1725–1736 (1961)CrossRefGoogle Scholar
  3. 3.
    A. van den Bos, Alternative interpretation of maximum entropy spectral analysis. IEEE Trans. Inform. Theory 17, 493–494 (1971)CrossRefGoogle Scholar
  4. 4.
    H. Bouasse, Acoustique Générale: Ondes Aériennes (Delagrave, 1926)Google Scholar
  5. 5.
    L. de Broglie, Certitudes et Incertitudes de la Science. (Albin Michel, Paris, 1966)Google Scholar
  6. 6.
    J. P. Burg, A new analysis technique for time series data. in Modern Spectrum Analysis, ed. by D.G. Childers (IEEE Press, New York 1978), pp. 42–49. Reprint of a paper presented at the NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics, 1968Google Scholar
  7. 7.
    G.A. Carse, J. Urquhart, Harmonic analysis. in Modern Instruments and Methods of Calculation, ed. by E.M. Horsburgh (Tomash, Los Angeles, 1914) pp. 220–248 (Reprinted 1982)Google Scholar
  8. 8.
    H.S. Carslaw, Introduction to the Theory of Fourier’s Series and Integrals, 3rd edn (Dover Publications, New York, 1930)Google Scholar
  9. 9.
    A. Cauchy, Mémoire sur la théorie de la propagation des ondes à la surface d’un fluide pesant. Mémoires des Savans Étranger, pp. 3–313 (1827). Reprinted in Cauchy’s Oevres Complètes 1re série tome 1Google Scholar
  10. 10.
    T. Chiba, M. Kajiyama, The Vowel: Its Nature and Structure (Phonetic Society of Japan, Tokyo, 1958)Google Scholar
  11. 11.
    J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    I.B. Crandall, The sounds of speech. Bell. Sys. Tech. J. IV, 586–626 (1925)Google Scholar
  13. 13.
    I.B. Crandall, Dynamical study of the vowel sounds, part II. Bell. Sys. Tech. J. VI, 100–116 (1927)Google Scholar
  14. 14.
    I.B. Crandall, C.F. Sacia, A dynamical study of the vowel sounds. Bell. Sys. Tech. J. III, 232–237 (1924)Google Scholar
  15. 15.
    G.C. Danielson, C. Lanczos, Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. J. Franklin Inst. 233, 365–380, 435–452 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    F.C. Donders, Über die Natur der Vokale. Archiv f. d. holländische Beiträge z. Natur- u. Heilkunde I (1858)Google Scholar
  17. 17.
    A.J. Ellis, Analysis and synthesis of vowel sounds. In: On the Sensations of Tone (Helmholtz) [29], pp. 538–543Google Scholar
  18. 18.
    G. Fant, Acoustic Theory of Speech Production (The Hague, Mouton, 1960). Reissued 1970Google Scholar
  19. 19.
    P. Flandrin, Time-Frequency/Time-Scale Analysis. English edn (Academic Press, San Diego, 1999)zbMATHGoogle Scholar
  20. 20.
    H. Fletcher, The nature of speech and its interpretation. J. Franklin Inst. 193(6), 729–747 (1922)CrossRefGoogle Scholar
  21. 21.
    H. Fletcher, Speech and Hearing (D. van Nostrand, Princeton, 1929)Google Scholar
  22. 22.
    H. Fletcher, Speech and Hearing in Communication. (D. van Nostrand, Princeton, 1953)Google Scholar
  23. 23.
    J.B.J. Fourier, Théorie de la propagation de la chaleur dans les solides (1807). Manuscript first published in [26]Google Scholar
  24. 24.
    C. Godfrey, On the application of Fourier’s double integrals to optical problems. Phil. Trans. R. Soc. Lond. Ser. A 195, 329–362 (1900)CrossRefGoogle Scholar
  25. 25.
    M. Gouy, Sur le mouvement lumineux. J. Phys. 5 (1886)Google Scholar
  26. 26.
    I. Grattan-Guinness, Joseph Fourier 1768–1830 (The MIT Press, Cambridge, 1972)zbMATHGoogle Scholar
  27. 27.
    H.H. Hall, Sound analysis. J. Acoust. Soc. Am. 8, 257–262 (1937)CrossRefGoogle Scholar
  28. 28.
    M.T. Heideman, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. IEEE Acoust. Speech Sig. Proc. Mag. 1, 14–21 (1984)Google Scholar
  29. 29.
    H. Helmholtz, On the Sensations of Tone, 2nd English edn. (Longmans & Co., Oxford, 1885)Google Scholar
  30. 30.
    F. Jenkin, J.A. Ewing, On the harmonic analysis of certain vowel sounds. Trans. R. Soc. Edinb. 28, 745–777 (1878)Google Scholar
  31. 31.
    M. Joos, Acoustic Phonetics. (No. 23 in Language Monographs. Linguistic Society of America, Baltimore, 1948)Google Scholar
  32. 32.
    R. Koenig, Die manometrischen Flammen. Ann. der Phys. Chem. 222(6), 161–199 (1872)CrossRefGoogle Scholar
  33. 33.
    W. Koenig, H.K. Dunn, L.Y. Lacy, The sound spectrograph. J. Acoust. Soc. Am. 18(1), 19–49 (1946)CrossRefGoogle Scholar
  34. 34.
    G.A. Kopp, H.C. Green, Basic phonetic principles of visible speech. J. Acoust. Soc. Am. 18(1), 74–89 (1946)CrossRefGoogle Scholar
  35. 35.
    D. Lewis, Vocal resonance. J. Acoust. Soc. Am. 8, 91–99 (1936)CrossRefGoogle Scholar
  36. 36.
    R.J. Lloyd, Some researches into the nature of vowel-sound. Ph.D. thesis (University of London, 1890)Google Scholar
  37. 37.
    R.J. Lloyd, Speech sounds: their nature and causation. Phonet. Stud. IV, 37–67 (1891)Google Scholar
  38. 38.
    J.D. Markel, A.H. Gray Jr, Linear Prediction of Speech. (Springer, Berlin, 1976)zbMATHGoogle Scholar
  39. 39.
    E. Merritt, On a method of photographing the manometric flame, with applications to the study of the vowel A. Phys. Rev. I (1893)Google Scholar
  40. 40.
    D.C. Miller, The Science of Musical Sounds, 2nd edn. (MacMillan, New York, 1926)Google Scholar
  41. 41.
    J.G. M’Kendrick, Experimental phonetics. Nature 65(1678), 182–189 (1901)CrossRefGoogle Scholar
  42. 42.
    A. V. Oppenheim, Speech spectrograms using the fast Fourier transform. IEEE Spectrum (8), 57–62 (1970)Google Scholar
  43. 43.
    R.A.S. Paget, The production of artificial vowel sounds. Proc. R. Soc. Lond. A 102(719), 752–765 (1923)CrossRefGoogle Scholar
  44. 44.
    G.E. Peterson, H.L. Barney, Control methods used in a study of the vowels. J. Acoust. Soc. Am. 24(2), 175–184 (1952)CrossRefGoogle Scholar
  45. 45.
    H. Pipping, Zur Phonetik der finnischen Sprache. (Helsingfors, 1899)Google Scholar
  46. 46.
    R.K. Potter, G.A. Kopp, H.C. Green, Visible Speech. (D. van Nostrand, New York, 1947)Google Scholar
  47. 47.
    R.K. Potter, J.C. Steinberg, Toward the specification of speech. J. Acoust. Soc. Am. 22(6), 807–820 (1950)CrossRefGoogle Scholar
  48. 48.
    C.F. Sacia, Photomechanical wave analyzer applied to inharmonic analysis. J. Opt. Soc. Am. Rev. Sci. Instrum. 9, 487–494 (1924)CrossRefGoogle Scholar
  49. 49.
    S. Saito, F. Itakura, The theoretical consideration of statistically optimum methods for speech spectral density. (Technical Report 3107, Electrical Communication Laboratory, N. T. T., Tokyo, 1966) (in Japanese)Google Scholar
  50. 50.
    Schneebeli: Sur la théorie du timbre et particulièrement des voyelles. Archives des Sciences Physiques et Naturelles de Genève (1879)Google Scholar
  51. 51.
    E.W. Scripture, The Elements of Experimental Phonetics. (Charles Scribner’s Sons, New York, 1902)Google Scholar
  52. 52.
    J.C. Steinberg, Application of sound measuring instruments to the study of phonetic problems. J Acoustical Soc Am 6, 16–24 (1934)CrossRefGoogle Scholar
  53. 53.
    J.W. Strutt (Baron Rayleigh), The Theory of Sound, vol. II, 2nd edn (Macmillan, London, 1896)Google Scholar
  54. 54.
    S.P. Thompson, A new method of approximate harmonic analysis by selected ordinates. Proc. Phys. Soc. Lond. 23, 334–343 (1911)Google Scholar
  55. 55.
    W. Thomson (Lord Kelvin), Harmonic analyzer. Proc. R. Soc. Lond. 27, 371–373 (1878)Google Scholar
  56. 56.
    W. Thomson (Lord Kelvin), P.G. Tait, Treatise on Natural Philosophy, vol. 1, 2nd edn. (Cambridge University Press, Cambridge, 1912)Google Scholar
  57. 57.
    E. Whittaker, G. Robinson, The Calculus of Observations. 4th edn (D. van Nostrand, New York, 1944)Google Scholar
  58. 58.
    N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications. (Technology Press of M.I.T., Cambridge, 1949)zbMATHGoogle Scholar
  59. 59.
    R. Willis, On the vowel sounds, and on reed organ-pipes. Trans. Camb. Phil. Soc III, 231–268 (1830)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of LinguisticsCalifornia State University FresnoFresnoUSA

Personalised recommendations