Speech Spectrum Analysis pp 167-201 | Cite as

# Linear Prediction and ARMA Spectrum Estimation

- 1.7k Downloads

## Abstract

Up to this point, I have presented speech analysis methods which obtain spectral or time–frequency information from the signal data directly by means of some kind of transformation. It has been shown how different processing schemes can extract such information from the signal in different ways, but none has relied on any special assumptions about a speech signal beyond the most general and widely-held sort. In this chapter, I introduce an entirely different approach to what is often called “spectral estimation,” in which the signal is explicitly assumed to conform to the outlines of a model. The parameters of the assumed model are then estimated from the signal data, and the values of the parameters are used as a kind of proxy estimate of corresponding signal properties.

## Keywords

Linear Prediction Vocal Tract Linear Prediction Coefficient Speech Spectrum Real Speech## References

- 1.R.L. Allen, D.W. Mills,
*Signal Analysis: Time, Frequency, Scale, and Structure*(Wiley, New York, 2004)Google Scholar - 2.N. Andersen, On the calculation of filter coefficients for maximum entropy spectral analysis. Geophysics.
**39**, 69–72 (1974)CrossRefGoogle Scholar - 3.B.S. Atal, S.L. Hanauer, Speech analysis and synthesis by linear prediction of the speech wave. J. Acoust. Soc. Am.
**50**(2 part 2), 637–655 (1971)CrossRefGoogle Scholar - 4.P. Boersma, D. Weenink, Praat: Doing phonetics by computer. Comp. Softw. (2009)Google Scholar
- 5.A. van den Bos, Alternative interpretation of maximum entropy spectral analysis. IEEE Trans. Inform. Theory.
**17**, 493–494 (1971)CrossRefGoogle Scholar - 6.G.E.P. Box, G.M. Jenkins,
*Time Series Analysis: Forecasting and Control*, rev. edn. (Holden-Day, San Francisco, 1976)Google Scholar - 7.P.M.T. Broersen,
*Automatic Autocorrelation and Spectral Analysis*(Springer, Berlin, 2006)Google Scholar - 8.H.P. Bucker, Comparison of FFT and Prony algorithms for bearing estimation of narrow-band signals in a realistic ocean environment. J. Acoust. Soc. Am.
**61**(3), 756–762 (1977)CrossRefGoogle Scholar - 9.J.P. Burg, A new analysis technique for time series data. in
*Modern Spectrum Analysis*, ed. by D.G. Childers (IEEE Press, New York, 1978), pp. 42–49. Reprint of a paper presented at the NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics (1968)Google Scholar - 10.R.L. Christensen, W.J. Strong, E.P. Palmer, A comparison of three methods of extracting resonance information from predictor-coefficient coded speech. IEEE Trans. Acoust. Speech Sig. Proc.
**24**(1), 8–14 (1976)CrossRefGoogle Scholar - 11.M.G. Di Benedetto, Vowel representation: some observations on temporal and spectral properties of the first formant frequency. J. Acoust. Soc. Am.
**86**(1), 55–66 (1989)CrossRefGoogle Scholar - 12.J. Durbin, The fitting of time-series models. Rev. de l’Institut International de Stat.
**28**(3), 233–244 (1960)zbMATHCrossRefGoogle Scholar - 13.G. Fant,
*Acoustic Theory of Speech Production*(Mouton, The Hague, 1960) Reissued 1970Google Scholar - 14.J.L. Flanagan,
*Speech Analysis, Synthesis and Perception*, 2nd edn. (Springer, Berlin, 1972)Google Scholar - 15.S.A. Fulop, Accuracy of formant measurement for synthesized vowels using the reassigned spectrogram and comparison with linear prediction. J. Acoust. Soc. Am.
**127**(4), 2114–2117 (2010)CrossRefGoogle Scholar - 16.G.B. Giannakis, J.M. Mendel, Identification of nonminimum phase systems using higher order statistics. IEEE Trans. Acoust. Speech Sig. Proc.
**37**(3), 360–377 (1989)MathSciNetzbMATHCrossRefGoogle Scholar - 17.P.R. Gutowski, E.A. Robinson, S. Treitel, Spectral estimation: fact or fiction. IEEE Trans. Geosci. Elect.
**16**(2), 80–84 (1978)CrossRefGoogle Scholar - 18.R.W. Hamming,
*Digital Filters*. 3rd edn. (Prentice-Hall, Englewood Cliffs, 1989)Google Scholar - 19.J. Hillenbrand, L.A. Getty, M.J. Clark, K. Wheeler, Acoustic characteristics of American English vowels. J. Acoust. Soc. Am.
**97**(5), 3099–3111 (1995)CrossRefGoogle Scholar - 20.S.M. Kay, S.L. Marple Jr., Spectrum analysis—a modern perspective. Proc. IEEE.
**69**(11), 1380–1419 (1981)CrossRefGoogle Scholar - 21.D. Kewley-Port, C.S. Watson, Formant-frequency discrimination for isolated English vowels. J. Acoust. Soc. Am.
**95**(1), 485–496 (1994)CrossRefGoogle Scholar - 22.J. Makhoul, Spectral analysis of speech by linear prediction. IEEE Trans. Audio Electroacoust.
**21**(3), 140–148 (1973)CrossRefGoogle Scholar - 23.J. Makhoul, Spectral linear prediction: properties and applications. IEEE Trans. Acoust. Speech Sig. Proc.
**23**(3), 283–296 (1975)MathSciNetCrossRefGoogle Scholar - 24.J.D. Markel, A.H. Gray Jr.,
*Linear Prediction of Speech*(Springer, Berlin, 1976)Google Scholar - 25.S.S. McCandless, An algorithm for automatic formant extraction using linear prediction spectra. IEEE Trans. Acoust. Speech Sig. Proc.
**22**(2), 135–141 (1974)CrossRefGoogle Scholar - 26.R.B. Monsen, A.M. Engebretson, The accuracy of formant frequency measurements: a comparison of spectrographic analysis and linear prediction. J. Speech Hearing Res.
**26**(3), 89–97 (1983)Google Scholar - 27.H. Morikawa, H. Fujisaki, System identification of the speech production process based on a state-space representation. IEEE Trans. Acoust. Speech Sig. Proc.
**32**(2), 252–262 (1984)CrossRefGoogle Scholar - 28.National Instruments: LabVIEW 8.6 Advanced Signal Processing Toolkit Help (2008). Available onlineGoogle Scholar
- 29.M.B. Priestley,
*Spectral Analysis and Time Series*, vol. 1. (Academic Press, London, 1981)Google Scholar - 30.J.G. Proakis, D.G. Manolakis,
*Digital Signal Processing: Principles, Algorithms, and Applications*, 2nd edn. 2nd edn. (Macmillan, New York, 1992)Google Scholar - 31.H.R. Radoski, E.J. Zawalick, P.F. Fougere, The superiority of maximum entropy power spectrum techniques applied to geomagnetic micropulsations. Phys. Earth Planet. Interiors.
**12**, 298–216 (1976)CrossRefGoogle Scholar - 32.J.R. Ragazzini, L.A. Zadeh, Analysis of sampled-data systems. Trans. Am. Inst. Elec. Eng.
**71**, 225–234 (1952)Google Scholar - 33.K. Steiglitz, On the simultaneous estimation of poles and zeros in speech analysis. IEEE Trans. Acoust. Speech Sig. Proc.
**25**(3), 229–234 (1977)CrossRefGoogle Scholar - 34.G.K. Vallabha, B. Tuller, Systematic errors in the formant analysis of steady-state vowels. Speech Commun.
**38**, 141–160 (2002)zbMATHCrossRefGoogle Scholar - 35.W.W.S. Wei,
*Time Series Analysis: Univariate and Multivariate Methods*. (Addison-Wesley, Redwood City, 1990)zbMATHGoogle Scholar - 36.Wikipedia: atan2. http://www.wikipedia.org (2010)