Advertisement

Quantum Chromodynamics and Chiral Symmetry

  • Stefan SchererEmail author
  • Matthias R. Schindler
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 830)

Abstract

Chiral perturbation theory (ChPT) provides a systematic framework for investigating strong-interaction processes at low energies, as opposed to a perturbative treatment of quantum chromodynamics (QCD) at high momentum transfers in terms of the “running coupling constant.” The basis of ChPT is the global \(\hbox{SU}(3)_L\times \hbox{SU}(3)_R\times{U}(1)_V\) symmetry of the QCD Lagrangian in the limit of massless \(u, d,\) and \(s\) quarks. This symmetry is assumed to be spontaneously broken down to \(\hbox{SU}(3)_V\times{U(1)}_V\) giving rise to eight massless Goldstone bosons. In this chapter we will describe in detail one of the foundations of ChPT, namely the symmetries of QCD and their consequences in terms of QCD Green functions.

Keywords

Green Function Singlet Axial-vector Current Partially Conserved Axial-vector Current (PCAC) Partial Functional Derivatives Equal-time Commutation Relations 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abers, E.S., Lee, B.W.: Phys. Rep. 9, 1 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    Adler, S.L.: Phys. Rev. 139, B1638 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    Adler, S.L.: Phys. Rev. 177, 2426 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    Adler, S.L., Bardeen, W.A.: Phys. Rev. 182, 1517 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    Adler, S.L., Dashen, R.F.: Current Algebras and Applications to Particle Physics. Benjamin, New York (1968)zbMATHGoogle Scholar
  6. 6.
    de Alfaro, V., Fubini, S., Furlan, G., Rossetti, C.: Currents in Hadron Physics (Chap. 2.1.1). North-Holland, Amsterdam (1973)Google Scholar
  7. 7.
    Altarelli, G.: Phys. Rep. 81, 1 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    Balachandran, A.P., Trahern, C.G.: Lectures on Group Theory for Physicists. Bibliopolis, Naples (1984)Google Scholar
  9. 9.
    Bell, J.S.: Nuovo Cim. A 50, 129 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Bell, J.S., Jackiw, R.: Nuovo Cim. A 60, 47 (1969)ADSCrossRefGoogle Scholar
  11. 11.
    Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)Google Scholar
  12. 12.
    Borodulin, V.I., Rogalev, R.N., Slabospitsky, S.R.: CORE: COmpendium of RElations. arXiv:hep-ph/9507456Google Scholar
  13. 13.
    Cheng, T.P., Li, L.F.: Gauge Theory of Elementary Particle Physics. Clarendon, Oxford (1984)Google Scholar
  14. 14.
    Das, A.: Field Theory: A Path Integral Approach. World Scientific, Singapore (1993)CrossRefGoogle Scholar
  15. 15.
    Donoghue, J.F., Golowich, E., Holstein, B.R.: Dynamics of the Standard Model. Cambridge University Press, Cambridge (1992)zbMATHCrossRefGoogle Scholar
  16. 16.
    Ericson, T.E., Weise, W.: Pions and Nuclei (Apps. 3 and 8). Clarendon, Oxford (1988)Google Scholar
  17. 17.
    Fradkin, E.S.: Zh. Eksp. Teor. Fiz. 29, 258 (1955) [Sov. Phys. JETP 2, 361 (1955)]Google Scholar
  18. 18.
    Fritzsch, H., Gell-Mann, M., Leutwyler, H.: Phys. Lett. B 47, 365 (1973)ADSCrossRefGoogle Scholar
  19. 19.
    Fuchs, T., Scherer, S.: Phys. Rev. C 68, 055501 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Gasser, J., Leutwyler, H.: Ann. Phys. 158, 142 (1984)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Gasser, J., Leutwyler, H.: Nucl. Phys. B 250, 465 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    Gell-Mann, M.: Phys. Rev. 125, 1067 (1962)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Gell-Mann, M.: Physics 1, 63 (1964)Google Scholar
  24. 24.
    Gell-Mann, M., Lévy, M.: Nuovo Cim. 16, 705 (1960)zbMATHCrossRefGoogle Scholar
  25. 25.
    Gell-Mann, M., Ne’eman, Y.: The Eightfold Way. Benjamin, New York (1964)Google Scholar
  26. 26.
    Gell-Mann, M., Oakes, R.J., Renner, B.: Phys. Rev. 175, 2195 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    Glashow, S.L., Weinberg, S.: Phys. Rev. Lett. 20, 224 (1968)ADSCrossRefGoogle Scholar
  28. 28.
    Greenberg, O.W.: Phys. Rev. Lett. 13, 598 (1964)ADSCrossRefGoogle Scholar
  29. 29.
    Gross, D.J., Wilczek, F.: Phys. Rev. Lett. 30, 1343 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    Han, M.Y., Nambu, Y.: Phys. Rev. 139, B1006 (1965)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    Hill, E.L.: Rev. Mod. Phys. 23, 253 (1951)ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Itzykson, C., Zuber, J.B.: Quantum Field Theory. McGraw-Hill, New York (1980)Google Scholar
  33. 33.
    Jackiw, R.: Field theoretic investigations in current algebra. In: Treiman, S., Jackiw, R., Gross, D.J. (eds.) Lectures on Current Algebra and Its Applications. Princeton University Press, Princeton (1972)Google Scholar
  34. 34.
    Jones, H.F.: Groups, Representations and Physics. Hilger, Bristol (1990)zbMATHCrossRefGoogle Scholar
  35. 35.
    Kronfeld, A.S., Quigg, C.: Am. J. Phys. 78, 1081 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Lehmann, H., Symanzik, K., Zimmermann, W.: Nuovo Cim. 1, 205 (1955)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Leutwyler, H.: Ann. Phys. 235, 165 (1994)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Lüders, G.: Ann. Phys. 2, 1 (1957)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Manohar, A.V., Sachrajda, C.T.: Quark masses. In: Nakamura, K., et al., Particle Data Group (eds.) Review of Particle Physics. J. Phys. G 37, 075021 (2010)Google Scholar
  40. 40.
    Marciano, W.J., Pagels, H.: Phys. Rep. 36, 137 (1978)ADSCrossRefGoogle Scholar
  41. 41.
    Nakamura, K., et al., Particle Data Group: J. Phys. G 37, 075021 (2010)Google Scholar
  42. 42.
    Noether, E.: In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. Band 1918, 235–257 (1918)Google Scholar
  43. 43.
    O’Raifeartaigh, L.: Group Structure of Gauge Theories. Cambridge University Press, Cambridge (1986)zbMATHCrossRefGoogle Scholar
  44. 44.
    Ottnad, K., Kubis, B., Meißner, U.-G., Guo, F.K.: Phys. Lett. B 687, 42 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Pagels, H.: Phys. Rep. 16, 219 (1975)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Scheck, F.: Electroweak and Strong Interactions: An Introduction to Theoretical Particle Physics (Chap. 3.5). Springer, Berlin (1996)Google Scholar
  47. 47.
    Schwinger, J.S.: Phys. Rev. Lett. 3, 296 (1959)ADSCrossRefGoogle Scholar
  48. 48.
    Takahashi, Y.: Nuovo Cim. 6, 371 (1957)zbMATHCrossRefGoogle Scholar
  49. 49.
    ’t Hooft, G.: Nucl. Phys. B 72, 461 (1974)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Treiman, S., Jackiw, R., Gross, D.J.: Lectures on Current Algebra and Its Applications. Princeton University Press, Princeton (1972)Google Scholar
  51. 51.
    Weinberg, S.: Phys. Rev. Lett. 31, 494 (1973)ADSCrossRefGoogle Scholar
  52. 52.
    Weinberg, S.: The Quantum Theory of Fields. Foundations, vol. 1 (Chap. 7.3). Cambridge University Press, Cambridge (1995)Google Scholar
  53. 53.
    Ward, J.C.: Phys. Rev. 78, 182 (1950)ADSzbMATHCrossRefGoogle Scholar
  54. 54.
    Yang, C.N., Mills, R.L.: Phys. Rev. 96, 191 (1954)MathSciNetADSCrossRefGoogle Scholar
  55. 55.
    Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Clarendon, Oxford (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Johannes Gutenberg-Universität MainzInstitut für KernphysikMainzGermany
  2. 2.Department of Physics and AstronomyUniversity of South CarolinaColumbiaUSA
  3. 3.Department of PhysicsThe George Washington UniversityWashingtonUSA

Personalised recommendations