Advertisement

Optical Rotatory Dispersion. Its Application to Protein Conformation

  • E. F. Woods
  • I. J. O’;Donnell
Chapter
  • 288 Downloads
Part of the Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse book series (PFLANZENANAL., volume 5)

Abstract

Optical rotation has been found to be one of the most convenient methods of following the denaturation of proteins. Generally speaking denaturation can be defined as a process or sequence of processes in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement (Kauzmann 1959). The terms “configuration”, “conformation” and “state of folding” are widely used for spatial arrangement. It is probably best to follow the suggestion of Blout (1960) and restrict the use of “configuration” to its original sense, i.e. the spatial arrangement around an asymmetric carbon atom, and to use “conformation” for the shape of the molecule in its entirety. The properties discussed in the previous Chapter i.e., viscosity, diffusion, sedimentation, and light scattering — can all furnish information on the overall shape of proteins or other macromolecules and changes in this shape with environment. Thus Doty, Bradbury and Holtzer (1956) were able to show using these methods, together with streaming birefringence, that poly-γ-benzyl-L-glutamate could exist in two conformations, the α-helix and the solvated randomly coiled form, depending on the solvent. The change from α-helix to random coil was accompanied by marked changes in the optical rotatory properties of the polypeptides. It is to be expected that an α-helical structure should contribute to the rotatory power of a polypeptide since helices are asymmetric and not superimposable on their mirror images. The work on polypeptides has shown that rotatory dispersion is capable of providing information on the folding of the polypeptide chain in proteins and the changes accompanying denaturation.

Keywords

Random Coil Helical Conformation Helical Content Rotatory Power Rotatory Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blout, E. R.: In Optical rotatory dispersion, by C. Djerassi, Chap. 17. New York: McGraw-Hill 1960.Google Scholar
  2. - Blout, E. R., C. de Lozé, S. M. Bloom, G. D. Fasman: J. Am. Chem. Soc. 82, 3787 (1960).CrossRefGoogle Scholar
  3. - Bradbury, E. M., A. R. Downie, A. Elliott and W. E. Hanby: Nature 187, 321 (1960).CrossRefGoogle Scholar
  4. Cohen, C.: Nature 175, 129 (1955).PubMedCrossRefGoogle Scholar
  5. - Coombes, J. D., E. Katchalski and P. Doty: Nature 185, 534 (1960).CrossRefGoogle Scholar
  6. Djerassi, C: Optical rotatory dispersion. New York: McGraw-Hill 1960.Google Scholar
  7. - Doty, P., J. H. Bradbury and A. M. Holtzer: J. Am. Chem. Soc. 78,947 (1956).CrossRefGoogle Scholar
  8. - Doty, P., and J. T. Yang: J. Am. Chem. Soc. 78, 498 (1956).CrossRefGoogle Scholar
  9. - Doty, P., and R. D. Lundberg: Proc. U.S. Nat. Acad. Sci. 43, 213 (1957).CrossRefGoogle Scholar
  10. - Doty, P.: Proceedings of the IVth International Congress of Biochemistry, Vienna, Vol. 9, p. 9. London: Pergamon Press 1959.Google Scholar
  11. - Downie, A. R., A. Elliott, W. E. Hanby and B. R. Malcolm: Proc. Roy. Soc. A 242, 325 (1957).CrossRefGoogle Scholar
  12. Fasman, G. D., and E. R. Blout: J. Am. Chem. Soc. 82, 2262 (1960).CrossRefGoogle Scholar
  13. - Fitts, D. D., and J. G. Kirkwood: Proc. U.S. Nat. Acad. Sci. 42, 33 (1956); 43, 1046 (1957);CrossRefGoogle Scholar
  14. - J. Am. Chem. Soc. 78, 2650 (1956)CrossRefGoogle Scholar
  15. - Foss, J. G.: Biochem. Biophys. Acta 43, 300 (1960).PubMedCrossRefGoogle Scholar
  16. - Foss, J. G., and J. A. Schellman: J. Phys. Chem. 63, 2007 (1960).CrossRefGoogle Scholar
  17. Goodman, M., E. E. Schmidt and D. Yphantis: J. Am. Chem. Soc. 82, 3483 (1960).CrossRefGoogle Scholar
  18. Harrington, W. F., and J. A. Schellman: Compt. rend. trav. lab. Carlsberg Ser Chim. 30, 21 (1956).Google Scholar
  19. - Harrington, W. F., and M. Sela: Biochim. Biophys. Acta 27, 24 (1958).PubMedCrossRefGoogle Scholar
  20. - Heller, W.: Polarimetry in A. Weissberger (ed.), Physical methods of organic chemistry, 3rd ed., Vol. 1, Part 3, Chap. 33. New York: Interscience Publishers, Inc. 1949.Google Scholar
  21. - Huggins, M. L.: J. Am. Chem. Soc. 74, 3963 (1952).Google Scholar
  22. Imahori, K.: Biochim. Biophys. Acta 37, 336 (1960).PubMedCrossRefGoogle Scholar
  23. - Imahori, K., A. Yoshida and H. Hashizume: Biochim. Biophys. Acta 45, 380 (1960).PubMedCrossRefGoogle Scholar
  24. Jirgensons, B.: Arch. Biochem. Biophys. 74, 70 (1958); 78, 227, 235 (1958); 89, 48 (1960) and other earlier papers cited in these references.PubMedCrossRefGoogle Scholar
  25. Katchalski, E. : Proceedings of the IVth International Congress of Biochemistry, Vienna, Vol. 9, p. 21. London: Pergamon Press 1959.Google Scholar
  26. - Karlson, R. H., K. S. Norland, G. D. Fasman and E. R. Blout: J. Am. Chem. Soc. 82, 2268 (1960).CrossRefGoogle Scholar
  27. - Kauzmann, W.: Ann. Rev. Phys. Chem. 8, 413 (1957);CrossRefGoogle Scholar
  28. - Adv. Protein Chem. XIV, 1 (1959)CrossRefGoogle Scholar
  29. - Kendrew, J. C., R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Phillips and V. C. Shore : Nature 185, 422 (1960).PubMedCrossRefGoogle Scholar
  30. - Klyne, W., and A. C. Parker: Optical rotatory dispersion in A. Weissberger (ed.), Physical methods of organic chemistry, 3rd ed. Vol. 1, Part III, Chapt. 34. New York: Interscience Publishers, Inc. 1960.Google Scholar
  31. - Kortüm, G., and M. Kortüm-Seiler: Mod. Meth. Plant Analysis 1, 278 (1956).CrossRefGoogle Scholar
  32. - Kuhn, W. : Ann. Rev. Phys. Chem. 9, 417 (1958).CrossRefGoogle Scholar
  33. Leach, S. J.: Rev. Pure App. Chem. (Australia) 9, 33 (1959).Google Scholar
  34. - Linderstrom-Lang, K. U., and J. A. Schellman: Biochem. Biophys. Acta 15, 156 (1954).PubMedCrossRefGoogle Scholar
  35. - Lowry, T. M.: Optical rotatory power. London: Longman, Green & Co. Ltd. 1935.Google Scholar
  36. Malcolm, B. R., and A. E. Elliott: J. Sci. Instr. 34, 48 (1957).CrossRefGoogle Scholar
  37. - Mitchell, S.: J. Sci. Instr. 34,89 (1957).CrossRefGoogle Scholar
  38. - Moffitt, W. : J. Chem. Phys. 25,467 (1956).CrossRefGoogle Scholar
  39. - Moffitt, W., and J. T. Yang: Proc. U.S. Nat. Acad. Sci. 42, 596 (1956).CrossRefGoogle Scholar
  40. - Moffitt, W., D. D. Fitts and J. G. Kirkwood: Proc. U.S. Nat. Acad. Sci. 43, 723 (1957).CrossRefGoogle Scholar
  41. Robinson, C., and M. J. Bott: Nature 168, 325 (1951).CrossRefGoogle Scholar
  42. - Rudolph, H.: J. Opt. Sci. Am. 45, 50 (1955).CrossRefGoogle Scholar
  43. Schellman, J. A. : Compt. Rend. trav. lab. Carlsberg, Ser. chim. 30, 363, 395, 415, 429, 439,450 (1958 a).Google Scholar
  44. - Schellman, C. G., and J. A. Schellman : Compt. rend. trav. lab. Carlsberg, Ser chim. 30, 465 (1958b).Google Scholar
  45. - Schellman, J. A. : J. Phys. Chem. 62,1485 (1958c).CrossRefGoogle Scholar
  46. - Schellman, J. A., and C. G. Schellman: J. Polymer Sci. 49, 129 (1961)CrossRefGoogle Scholar
  47. - Shooter, E. M.: Progr. in Biophys. and Biophys. Chem. 10, 196 (1960).Google Scholar
  48. - Steinberg, I. Z., M. Sela, W. F. Harrington, A. Berger and E. Katchalski: J. Am. Chem. Soc. 82, 5263 (1960).CrossRefGoogle Scholar
  49. Tanford, C., P. K. De, and V. G. Taggart: J. Am. Chem. Soc. 82, 6028 (1960).CrossRefGoogle Scholar
  50. Yang, J. T., and P. Doty: J. Am. Chem. Soc. 79, 761 (1957).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1962

Authors and Affiliations

  • E. F. Woods
  • I. J. O’;Donnell

There are no affiliations available

Personalised recommendations