Plant Spectra: Absorption and Action

  • W. L. Butler
  • K. H. Norris
Part of the Modern Methods of Plant Analysis / Moderne Methoden der Pflanzenanalyse book series (PFLANZENANAL., volume 5)


This chapter will discuss the information which can be obtained from spectral measurements of plant material. The interaction between light and matter is one of the few non-destructive methods of analysis available to the biological scientist. The spectral measurement of the light transmitted through objects affords a means of looking within those objects. Unfortunately, our prejudices about what is transparent and what is opaque have prevented the full use of these measurements. It is not generally realized that monochromatic light can be transmitted through whole apples, tomatoes, bean seeds, or peanuts and that many biochemical processes which involve light absorbing substances can thus be studied in the intact specimen. In vivo spectroscopy is a powerful method for biochemical research which has not been exploited to its fullest extent.


Action Spectrum Fluorescence Excitation Spectrum Lettuce Seed Tomato Puree Plant Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barer, R.: Science 121, 709 (1955).PubMedCrossRefGoogle Scholar
  2. - Crane, F. L., and Beinert, H.: J. Biol. Chem. 218, 717 (1956).PubMedGoogle Scholar
  3. - Borthwick, H. A., S. B. Hendricks and M. W. Parker: Bot. Gaz. 110, 103 (1948)CrossRefGoogle Scholar
  4. - Borthwick, H. A., S. B. Hendricks, M. W. Parker, E. H. Toole and V. K. Toole: Proc. Natl. Acad. Sci. 38,662 (1952).PubMedCrossRefGoogle Scholar
  5. - Butler, W. L. : Arch. Biochem. Biophys. 92,287 (1961a).PubMedCrossRefGoogle Scholar
  6. - Butler, W. L.: Arch. Biochem. Biophys. 93, 413 (1961 b).PubMedCrossRefGoogle Scholar
  7. - Butler, W. L., and K. H. Norris: Arch. Biochem. Biophys. 87, 31 (1960).PubMedCrossRefGoogle Scholar
  8. - Butler, W. L., K. H. Norris, H. W. Siegelman and S. B. Hendricks: Proc. Natl. Acad. Sci. 45,1703 (1959).PubMedCrossRefGoogle Scholar
  9. Chance, B.: Rev. Sci. Inst. 22, 634 (1951).CrossRefGoogle Scholar
  10. Duntly, S. C: J. Opt. Soc. Am. 32, 61 (1942).CrossRefGoogle Scholar
  11. - Duysens, L. M. N.: Thesis Utrecht (1952).Google Scholar
  12. - Duysens, L. M. N.: Biochem. Biophys. Acta 19, 1 (1956).PubMedCrossRefGoogle Scholar
  13. Emerson, R., R. Chalmers and C. Cederstrand : Proc. Natl. Acad. Sci. 43,133 (1957).PubMedCrossRefGoogle Scholar
  14. - Emerson, R., and C. M. Lewis: Am. J. Biol. 310, 165 (1943).Google Scholar
  15. Flint, L. H., and E. D. McAlister: Smithsonian Misc. Pub. 99, No. 5 (1935).Google Scholar
  16. - French, C. S.: Carnegie Inst. Wash. Yearbook (1959).Google Scholar
  17. - French, C. S., and G. E. Harper: Carnegie Inst. Wash. Yearbook 56, 281 (1957).Google Scholar
  18. - French, C. S., and V. K. Young: J. Gen. Physiol. 35, 873 (1951).CrossRefGoogle Scholar
  19. Giese, A. T., and C. S. French: Applied Spectroscopy 9, 78 (1955).CrossRefGoogle Scholar
  20. Hariharan, P., and M. S. Bhalla: Rev. Sci. Inst. 27, 3 (1956).CrossRefGoogle Scholar
  21. - Hendricks, S. B., H.A. Borthwick and R. J. Downs: Proc. Natl. Acad. Sci. 42, 19 (1956).PubMedCrossRefGoogle Scholar
  22. Keilin, D., and E. F. Hartree: Nature (Lond.) 164, 254 (1949).CrossRefGoogle Scholar
  23. - Kubelka, P. : J. Opt. Soc. Am. 38, 448 (1948).PubMedCrossRefGoogle Scholar
  24. - Kubelka, P., and F. Munk: Z. techn. Physik 12, 593 (1931).Google Scholar
  25. Latimer, P.: Plant Physiol. 34,193 (1959).PubMedCrossRefGoogle Scholar
  26. - Lundegardh, H.: Biochem. Biophys. Acta 20, 469 (1956).PubMedCrossRefGoogle Scholar
  27. Meistre, H.: Coldspring Harbor Symp. Quart. Biol. 3, 191 (1935).CrossRefGoogle Scholar
  28. - Mohr, H., and G. Schoser: Planta 53,1 (1959).CrossRefGoogle Scholar
  29. - Monk, G. S., and C. F. Ehret: Radiation Research 5, 88 (1956).PubMedCrossRefGoogle Scholar
  30. Parker, M. W., S. B. Hendricks and H. A. Borthwick: Bot. Gaz. 108, 242 (1946).CrossRefGoogle Scholar
  31. - Parker, M. W., S. B. Hendricks and H. A. Borthwick: Am. J. Bot. 36, 194 (1949).CrossRefGoogle Scholar
  32. - Parker, M. W., S. B. Hendricks, H. A. Borthwick and N. J. Scully: Bot. Gaz. 108, 1 (1946).CrossRefGoogle Scholar
  33. - Piringer, A., and P. Heinze: Plant Physiol. 29, 467 (1954).PubMedCrossRefGoogle Scholar
  34. - Price, W. C., and K. S. Tetlow: J. Chem. Phys. 16, 1157 (1948).CrossRefGoogle Scholar
  35. Rabinowitch, E.: Photosynthesis and related process, Vol. II, pt 1, 672. New York: Interscience (1951.Google Scholar
  36. - Rabinowitch, E.: Photosynthesis and related processes, Vol. II, pt 2. New York Interscience 1865 (1956).Google Scholar
  37. Shibata, K., A. Benson and M. Calvin: Biochem. Biophys. Acta 15, 461 (1954).PubMedCrossRefGoogle Scholar
  38. - Shropshire, W., and R. B. Withrow: Plant Physiol. 33, 360 (1958).PubMedCrossRefGoogle Scholar
  39. - Smith, J. H. C., K. Shibata and R. W. Hart: Arch. Biochem. Biophys. 72, 457 (1957)PubMedCrossRefGoogle Scholar
  40. Withrow, R. B.: Plant Physiol. 32, 355 (1957).PubMedCrossRefGoogle Scholar
  41. Yang, C. C: Rev. Sci. Inst. 25, 807 (1954).CrossRefGoogle Scholar
  42. - Yang, C. C., and V. Legallais: Rev. Sci. Inst. 25, 801 (1954).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1962

Authors and Affiliations

  • W. L. Butler
  • K. H. Norris

There are no affiliations available

Personalised recommendations