Principles of Cancer Chemotherapy

  • R. B. Ewesuedo
  • M. J. Ratain


The use of anticancer drugs as part of the treatment strategy for cancer has greatly improved the overall prognosis of cancer. Though the principles of cancer chemotherapy stem from, with rare exceptions, empirical observations made in early clinical trials involving children, the overall approach to cancer chemotherapy will continue to evolve as more clinical protocols adapt to emerging knowledge about carcinogenesis.


Clin Oncol Metastatic Breast Cancer Cancer Chemotherapy Hairy Cell Leukemia Vinca Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chabner BA (1990) Clinical strategies for cancer treatment: the role of drugs. In: Chabner BA, Collins JM (eds) Cancer chemotherapy. Principles and practice. Lippincott, Philadelphia, pp 1–15Google Scholar
  2. 2.
    Henderson EH, Samaha RJ (1969) Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res 29:2272–2280Google Scholar
  3. 3.
    Erlichman C, Fine S, Wong A et al (1988) A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6:469–475PubMedGoogle Scholar
  4. 4.
    Hryniuk WM, Bush H (1984) The importance of dose intensity in chemotherapy of metastatic breast cancer. J Clin Oncol 2:1281–1288PubMedGoogle Scholar
  5. 5.
    Frei E III, Canellos G (1980) Dose: a critical factor in cancer chemotherapy. Am J Med 69:585–594PubMedCrossRefGoogle Scholar
  6. 6.
    Hryniuk WA, Figueredo A, Goodyear M (1987) Applications of dose intensity to problems in chemotherapy of breast and colorectal cancer. Semin Oncol 14[Suppl 4]: 3–11PubMedGoogle Scholar
  7. 7.
    Ayash L, Elias A, Ibrahim J et al (1997) High-dose multimodality therapy with autologous stem cell support for stage IIIB breast cancer: the DFC/BIH experience. Proc Am Soc Clin Oncol 16:90Google Scholar
  8. 8.
    Smith MA, Ungerleider RS, Horowitz ME et al (1991) Influence of doxorubicin dose intensity on response and outcome for patients with osteogenic sarcoma and Ewing’s sarcoma. J Nati Cancer Inst 83:1460–1470CrossRefGoogle Scholar
  9. 9.
    Cheung N-KV, Heller G (1991) Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J Clin Oncol 9:1050–1058PubMedGoogle Scholar
  10. 10.
    Howell SB (1988) Intraperitoneal chemotherapy for ovarian carcinoma. J Clin Oncol 6:1673–1675PubMedGoogle Scholar
  11. 11.
    Savarese DMF, Hsieh C, Stewart FM (1997) Clinical impact of chemotherapy dose escalation in patients with hematologic malignancies and solid tumors. J Clin Oncol 15:2981–2995PubMedGoogle Scholar
  12. 12.
    Wrigley E, Weaver A, Jayson G et al (1996) A randomized trial investigating the dose intensity of primary chemotherapy in patients with ovarian carcinoma: a comparison of chemotherapy given every four weeks with the same chemotherapy given at three-week intervals Ann Oncol 7:705–711PubMedCrossRefGoogle Scholar
  13. 13.
    Wittes RE (1986) Adjuvant chemotherapy-clinical trials and laboratory models. Cancer Treat Rep 70:87–103PubMedGoogle Scholar
  14. 14.
    Martin DS (1981) The scientific basis for adjuvant chemotherapy. Cancer Treat Rev 8:169–189PubMedCrossRefGoogle Scholar
  15. 15.
    Berg SL, Grisell DL, DeLaney TF et al (1991) Principles of treatment of pediatric solid tumors. Pediatr Clin North Am 38:249–267PubMedGoogle Scholar
  16. 16.
    Goldie JH, Coldman AJ (1986) Theoretical considerations regarding the early use of adjuvant chemotherapy. Recent Res Cancer Res 103:30–35CrossRefGoogle Scholar
  17. 17.
    Early Breast Cancer Trialists’ Collaborative Group (1988) Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. N Engl J Med 319:1681–1692CrossRefGoogle Scholar
  18. 18.
    Weiss GR, Coltman CA (1990) Conference summary overview. In: Salmon SE (ed) Adjuvant therapy of cancer VI. Saunder, Philadelphia, pp 623–629Google Scholar
  19. 19.
    Moertel CG, Fleming TR, Macdonald JS et al (1990) Levamisole and fluorouracil for adjuvant therapy of resected can cer. N Engl J Med 322:352–358PubMedCrossRefGoogle Scholar
  20. 20.
    O’Connell MJ, Gunderson IX, Fleming TR (1988) Surgical adjuvant therapy of rectal cancer. Semin Oncol 15:138–145PubMedGoogle Scholar
  21. 21.
    Gilewski T, Bitran JD (1996) Adjuvant chemotherapy. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 79–100Google Scholar
  22. 22.
    Ragaz J, Baird R, Rebbeck P et al (1997) Preoperative (neoadjuvant-PRE) versus postoperative (POST) adjuvant chemotherapy (CT) for stage I-II breast cancer (SI-II BC). Long-term analysis of British Columbia randomized trial. Proc Am Soc Clin Oncol 16:142Google Scholar
  23. 23.
    Belani CP, Luketich J, Landreneau RJ et al (1997) Efficacy of paclitaxel, 5-fluorouracil and cisplatin (PFT) regimen for carcinoma of the esophagus. Proc Am Soc Clin Oncol 16:283Google Scholar
  24. 24.
    Wanebo HJ, Chougule P, Akerley W et al (1997) Preoperative paclitaxel, carboplatin and radiation in advanced head and neck cancer (stage III and IV) induces a high rate of complete pathologic response (CR) at the primary site and cino ma of the esophagus. Proc Am Soc Clin Oncol 16:283Google Scholar
  25. 25.
    Balis FM, Holcenberg JS, Poplack DG (1997) General principles of chemotherapy. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology. Lippincott Raven, Philadelphia, pp 215–272Google Scholar
  26. 26.
    Miller AA, Ratain MJ, Schilsky RL (1996) Principles of pharmacology. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 27–41Google Scholar
  27. 27.
    Kohn KW, Jackman J, O’C onnor PM (1994) Cell cycle control and cancer chemotherapy. J Cell Biochem 54:440–452PubMedCrossRefGoogle Scholar
  28. 28.
    O’C onnor PM, Kohn KW (1992) A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin Cancer Biol 3:409–416PubMedGoogle Scholar
  29. 29.
    Calvert AH, Newell DR, Grumbell LA et al (1989) Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J Clin Oncol 7:1748–1756PubMedGoogle Scholar
  30. 30.
    Chatelut E, Canal P, Brunner V et al (1995) Prediction of carboplatin clearance from standard morphological and biological patient characteristics. J Nati Cancer Inst 87:573–580CrossRefGoogle Scholar
  31. 31.
    Ratain MJ, Schilsky RL, Conley BA et al (1990) Pharmacodynamics in cancer therapy. J Clin Oncol 8:1739–1753PubMedGoogle Scholar
  32. 32.
    Cockcroft DW, Gault MN (1976) Prediction of clearance from serum creatinine. Nephron 16:31–41PubMedCrossRefGoogle Scholar
  33. 33.
    Borsi JD, Moe PJ (1987) Prognostic importance of systemic clearance of methotrexate in childhood. Cancer Chemother Pharmacol 19:261–264PubMedCrossRefGoogle Scholar
  34. 34.
    Lind MJ, Margison JM, Cerny T et al (1989) Prolongation of ifosfamide elimination half-life in obese patients due to altered drug distribution. Cancer Chemother Pharmacol 25:139–142PubMedCrossRefGoogle Scholar
  35. 35.
    Freyer G, Ligneua B, Tranchand B et al (1997) Pharmacokinetic studies in cancer chemotherapy: usefulness in clinical practice. Cancer Treat Rev 23:153–169PubMedCrossRefGoogle Scholar
  36. 36.
    Krynetski EY, Tai HL, Yates CR et al (1996) Genetic polymorphism of thiopurine S-methyltransferase: clinical importance and molecular mechanisms. Pharmacogenetics 6:279–290PubMedCrossRefGoogle Scholar
  37. 37.
    Wei X, McLeod HL, McMurrough J et al (1996) Molecular basis of human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J Clin Invest 93:610–615CrossRefGoogle Scholar
  38. 38.
    Lalitha I, King CD, Whitington PF et al (1998) Genetic predisposition to the metabolism of irinotecan (CPT-11) role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J Clin Invest 101:847–854CrossRefGoogle Scholar
  39. 39.
    Gupta E, Safa AR, Wang X et al (1996) Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res 56:1309–1314PubMedGoogle Scholar
  40. 40.
    Goldie JH, Coldman AJ (1984) The genetic origin of drug resistance in neoplasms: implications for systemic therapy. Cancer Res 44:3643–3653PubMedGoogle Scholar
  41. 41.
    Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40[Suppl]:S3–S8PubMedCrossRefGoogle Scholar
  42. 42.
    Chan HSL, Thorner P, Haddad G et al (1990) Immunohistochemical detection of P-glycoprotein: prognostic correlation in soft tissue sarcoma of childhood. J Clin Oncol 8:689–704PubMedGoogle Scholar
  43. 43.
    Chan HSL, Haddad G, Thorner PS et al (1991) P-glycoprotein as a predictor of the outcome of therapy for neuroblastoma. N Engl J Med 325:1608–1614PubMedCrossRefGoogle Scholar
  44. 44.
    Durie BGM, Dalton WS (1988) Reversal of drug resistance in multiple myeloma with verapamil. Br J Hematol 68:203–206CrossRefGoogle Scholar
  45. 45.
    Dalton WS, Grogan TM, Meltzer PS et al (1989) Drug resistance in multiple myeloma and non-Hodgkin’s lymphoma: detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J Clin Oncol 7:415–424PubMedGoogle Scholar
  46. 46.
    Ozols RF, Cunnion RE, Klecker RW et al (1987) Verapamil and Adriamycin in the treatment of drug-resistant ovarian cancer patients. J Clin Oncol 5:641–647PubMedGoogle Scholar
  47. 47.
    Hall AG, Tilby MJ (1992) Mechanisms of action of, and modes of resistance to, alkylating agents used in the treatment of hematological malignancies. Blood Rev 6:163–173PubMedCrossRefGoogle Scholar
  48. 48.
    Bruce WR, Meeker BE, Valeriote FA (1966) Comparison of the sensitivity of normal hematopoietic and transplanted lymphoma colony-forming cells to chemotherapeutic agents administered in vivo. J Natl Cancer Inst 37:233–245PubMedGoogle Scholar
  49. 49.
    Garcia ST, McQuillan A, Panasci I (1988) Correlation between the cytotoxicity of melphalan and DNA crosslinks as detected by the ethidium bromide fluorescence assay in the F1 variant of B16 melanoma cells. Biochem Pharmacol 37:3189–3192PubMedCrossRefGoogle Scholar
  50. 50.
    Pedersen-Bjergaard J, Ersboll J, Sorensen HM et al (1985). Risk of acute nonlymphocytic leukemia and preleukemia in patients treated with cyclophosphamide for non-Hodgkin’s lymphoma. Comparison with results obtained in patients treated for Hodgkin’s disease and ovarian carcinoma with other alkylating agents}. Ann Intern Med 103:195–200PubMedGoogle Scholar
  51. 51.
    Calsou P, Salles B (1993) Role of DNA repair in the mechanisms of cell resistance to alkylating agents and cisplatin. Cancer Chemother Pharmacol 32:85–89PubMedCrossRefGoogle Scholar
  52. 52.
    Hare CB, Elion GB, Colvin OM et al (1997) Characterization of the mechanisms of busulfan resistance in a human glioblastoma multiforme xenograft. Cancer Chemother Pharmacol 40:409–414PubMedCrossRefGoogle Scholar
  53. 53.
    Friedman HS, Skapek SX, Colvin OM et al (1988) Melphalan transport, glutathione levels, and glutathione-S-transferase activity in human medulloblastoma. Cancer Res 48:5397–5402PubMedGoogle Scholar
  54. 54.
    Colvin OM, Friedman HS, Gamcsik MP et al (1993) Role of glutathione in cellular resistance to alkylating agents. Adv Enzyme Regul 33:19–26PubMedCrossRefGoogle Scholar
  55. 55.
    Ahmad S, Okine L, Le B et al (1987) Elevation of glutathione in phenylalanine mustard-resistant murine L1210 leukemia cells. J Biol Chem 262:15048–15053PubMedGoogle Scholar
  56. 56.
    Robson CN, Lewis AD, Wolf CR et al (1987) Reduced levels of drug-induced DNA cross-linking in nitrogen mustardresistant Chinese hamster ovary cells expressing elevated glutathione-S-transferase activity. Cancer Res 47: 6022–6027PubMedGoogle Scholar
  57. 57.
    Goldberg GJ, Moore MJ (1997) Nitrogen mustards. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 3–22Google Scholar
  58. 58.
    Chang TKH, Weber GF, Crespi CL et al (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–5637PubMedGoogle Scholar
  59. 59.
    Wright JE (1997) Phosphoramide and oxazaphosphorine mustards. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 23–80Google Scholar
  60. 60.
    Chen TL, Passos-Coelho JL, Noe DA et al (1995) Non-linear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res 55:810–817PubMedGoogle Scholar
  61. 61.
    Grochow LB (1996) Covalent DNA-binding drugs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 293–316Google Scholar
  62. 62.
    Dechant KL, Brogden RN, Pilkington T et al (1991) Ifosfamide/Mesna. A review of its antineoplastic activity, pharmacokinetic properties and therapeutic efficacy in cancer. Drugs 42:428–467PubMedCrossRefGoogle Scholar
  63. 63.
    Kaiser GP, Beijnen JH, Bult A et al (1994) Ifosfamide metabolism and pharmacokinetics (review). Anticancer Res 14:517–532Google Scholar
  64. 64.
    Kupfer A, Aeschlimann C, Wermuth B et al (1994) Prophylaxis and reversal of ifosfamide encephalopathy with methylene-blue. Lancet 343:763–764PubMedCrossRefGoogle Scholar
  65. 65.
    Goldenberg GJ, Lee M, Lam HYP et al (1977) Evidence for carrier-mediated transport of melphalan by L5178Y lymphoblasts in vitro. Cancer Res 37:755–760PubMedGoogle Scholar
  66. 66.
    Dulik DL, Fenselau C (1987) Conversion of melphalan to 4 (glutathionyl) phenylalanine: a novel mechanism for conjugation by glutathione-S-transferases. Drug Metab Dispos 15:195–199PubMedGoogle Scholar
  67. 67.
    Samuels BL, Bitran JD (1995) High-dose intravenous melphalan: a review. J Clin Oncol 13:1786–1799PubMedGoogle Scholar
  68. 68.
    Nagura E, Ichikawa A, Kamiya O et al (1997) A randomized study comparing VMCP and MMPP in the treatment of multiple myeloma. Cancer Chemother Pharmacol 39: 279–285PubMedCrossRefGoogle Scholar
  69. 69.
    Cunningham D, Paz-Ares L, Milan S et al (1994) High-dose melphalan and autologous bone marrow transplantation as consolidation in previously untreated myeloma. J Clin Oncol 12:759–763PubMedGoogle Scholar
  70. 70.
    Gouyette A, Hartman O, Pico JL (1986) Pharmacokinetics of high-dose melphalan in children and adults. Cancer Chemother Pharmacol 16:184–189PubMedCrossRefGoogle Scholar
  71. 71.
    Ardiet C, Tranchand B, Biron P et al (1986) Pharmacokinetics of high-dose intravenous melphalan in children and adults with forced diuresis: report on 26 cases. Cancer Chemother Pharmacol 16:300–305PubMedCrossRefGoogle Scholar
  72. 72.
    Bengala C, Tibaldi C, Pazzagli I et al (1997) High-dose (HD) thiotepa and melphalan (L-PAM) with hemopoietic progenitor support as consolidation treatment following paclitaxel (TXL)-containing chemotherapy in metastatic breast cancer (MBC): a phase II study with pharmacokinetic profile analysis. Proc Am Soc Clin Oncol 16:98Google Scholar
  73. 73.
    Alberts DS, Chang SY, Chen HSG et al (1979) Kinetics of intravenous melphalan. Clin Pharmacol Ther 26:73–80PubMedGoogle Scholar
  74. 74.
    Begleiter A, Goldenberg GJ (1983) Uptake and decomposition of chlorambucil by L5178Y lymphoblasts in vitro. Biochem Pharm 32:535–539PubMedCrossRefGoogle Scholar
  75. 75.
    Alberts DS, Chang SY, Chen HSG et al (1980) Comparative pharmacokinetics of chlorambucil and melphalan in man. Rec Res Cancer Res 74:124–127CrossRefGoogle Scholar
  76. 76.
    Marmour D, Grob-Menendez F, Duyck F et al (1992) Very late return of spermatogenesis after chlorambucil therapy: case reports. Fertil Steril 58:845–846Google Scholar
  77. 77.
    Wong E, Holden CA, Broadbent V et al (1986) Histiocytosis presenting as intertrigo and responding to topical nitrogen mustard. Clin Exp Dermatol 11:183–187PubMedCrossRefGoogle Scholar
  78. 78.
    Chabner BA, Allegra CJ, Curt GA et al (1996) Antineoplastic agents. In: Hardman GH, Gilman AG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York, pp 1233–1287Google Scholar
  79. 79.
    Bradley MO, Sharkey NA, Kohn KW (1980) Mutagenicity and cytotoxicity of various nitrosoureas in V-79 Chinese hamster cells. Cancer Res 40:2719–2725PubMedGoogle Scholar
  80. 80.
    Mitchell EP, Schein PS (1986) Contributions of nitrosoureas to cancer treatment. Cancer Treat Rep 70:31–41PubMedGoogle Scholar
  81. 81.
    Kokkinakis DM, Moschel RC, Pegg AE et al (2000) Potentiation of BCNU antitumor efficacy by 9-substituted O6-benzylguanines. Effect of metabolism. Cancer Chemother Pharmacol 45:69–77PubMedCrossRefGoogle Scholar
  82. 82.
    Egyhazi S, Edgren MR, Hansson J et al (1997) Role of O6-methylguanine DNA methyltransferase, glutathione transferase M3-3 and glutathione in resistance to carmustine in a human non-small cell lung cancer cell line. Eur J Cancer 33:447–452PubMedGoogle Scholar
  83. 83.
    Burger PC, Kamenar E, Schold SC et al (1981) Encephalopathy following high-dose BCNU therapy. Cancer 48:1318–1327CrossRefGoogle Scholar
  84. 84.
    Lind MJ, Ardiet C (1993) Pharmacokinetics of alkylating agents. Cancer Surv 17:157–188PubMedGoogle Scholar
  85. 85.
    Levin VA, Hoffman W.Weinkam RJ (1978) Pharmacokinetics of BCNU in man: preliminary study of 20 patients. Cancer Treat Rep 62:1305–1312PubMedGoogle Scholar
  86. 86.
    Kornblith P, Walker M (1988) Chemotherapy for malignant gliomas. J Neurosurg 68:1–17PubMedCrossRefGoogle Scholar
  87. 87.
    Sipos EP, Tyler B, Piantadosi S et al (1997) Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother Pharmacol 39:383–389PubMedCrossRefGoogle Scholar
  88. 88.
    Sponzo RW, De Vita VT, Oliverio VT (1973) Physiologic disposition of l-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea (CCNU) and l-(2-chloroethyl)-3-(4-methylcyclohexyl)-l-nitrosourea (MeCCNU) in man. Cancer 31:1154–1156PubMedCrossRefGoogle Scholar
  89. 89.
    Kastrissios H, Chao NJ, Blaschke TF (1996) Pharmacokinetics of high-dose oral CCNU in bone marrow transplant patients. Cancer Chemother Pharmacol 38:425–430PubMedCrossRefGoogle Scholar
  90. 90.
    Iliadis A, Launay-Iliadis M-C, Lucas C et al (1996) Pharmacokinetics and pharmacodynamics of nitrosourea fotemustine: a French cancer centre multicentric study. Eur J Cancer 32A:455–460PubMedCrossRefGoogle Scholar
  91. 91.
    Leyvraz S, Spataro V, Bauer J et al (1997) Treatment of ocular melanoma metastatic to the liver by hepatic arterial chemotherapy. J Clin Oncol 15:2589–2595PubMedGoogle Scholar
  92. 92.
    Jacquillat C, Khayat D, Banzet P et al (1990) Final report of a French multicenter Phase II study of nitrosourea fotemustine in 153 evaluable patients with disseminated malignant melanoma including patients with cerebral metastases. Cancer 66:1873–1878PubMedCrossRefGoogle Scholar
  93. 93.
    Frenay M, Giroux B, Khoury S et al (1991) Phase II study of fotemustine in recurrent supra-tentorial malignant gliomas. Eur J Cancer 27:852–856PubMedCrossRefGoogle Scholar
  94. 94.
    Cotto C, Berille J, Souquet PJ et al (1996) A phase II trial of fotemustine and cisplatin in central nervous system metastases from non-small cell lung cancer. Eur J Cancer 32A:69–71PubMedCrossRefGoogle Scholar
  95. 95.
    Hayes MT, Bartley J, Parsons PG et al (1997) Mechanism of action of fotemustine, a new chloroethylnitrosourea anticancer agent: evidence for the formation of two DNA-reactive intermediates contributing to cytotoxicity. Biochemistry 36:10646–10654PubMedCrossRefGoogle Scholar
  96. 96.
    Tranchard B, Lucas C, Biron P et al (1993) Phase I pharmacokinetics study of high-dose fotemustine and its metabolite 2-chloroethanol in patients with high-grade gliomas. Cancer Chemother Pharmacol 32:46–52CrossRefGoogle Scholar
  97. 97.
    Marathi UK, Kroes RA, Dolan ME et al (1993) Prolonged depletion of O6-methylguanine-DNA methyltransferase activity following exposure to O6-benzylguanine with or without streptozocin enhances 1, 3-bis (2-chloroethyl)-l-nitrosourea sensitivity in vitro. Cancer Res 53:4281–4286PubMedGoogle Scholar
  98. 98.
    Wilson JKV, Haag JR, Trey JE et al (1995) Modulation of O6-alkylguanine alkyltransferase-directed DNA repair in metastatic colon cancers. J Clin Oncol 13:2301–2308Google Scholar
  99. 99.
    Schein P, Kahn R, Gorden P et al (1973) Streptozocin for malignant insulinomas and carcinoid tumor. Arch Intern Med 132:555–561PubMedCrossRefGoogle Scholar
  100. 100.
    Adolphe AB, Glasofer ED, Troetel WM et al (1977) Preliminary pharmacokinetics of streptozocin, an antineoplastic ancers. J Clin Oncol 13:2301–2308Google Scholar
  101. 101.
    Masters JRW, McDermott BJ, Harland S et al (1996) ThioTEPA pharmacokinetics during intravesical chemotherapy: the influence of dose and volume of instillate on systemic uptake and dose rate to the tumor. Cancer Chemother Pharmacol 38:59–64PubMedCrossRefGoogle Scholar
  102. 102.
    Bilgrami SA, Tutschka PJ, Tuck D et al (1997) Busulfan, thiotepa, and carboplatin followed by autologous stem cell rescue in metastatic carcinoma of the breast. Proc Am Soc Clin Oncol 16:99Google Scholar
  103. 103.
    Smith A, Rosenfeld S, Dropcho W et al (1997) High-dose thiotepa with hematopoietic reconstitution for recurrent aggressive oligodendroglioma. Proc Am Soc Clin Oncol 16:409Google Scholar
  104. 104.
    Hawkins D, Sanders J, Bensinger W et al (1997) Busulfan, melphalan, and thiotepa (MuBelTt) (total marrow irradiation (TM) with hematopoietic stem cells (HSC) for Ewing’s sarcoma family tumors (ES). Proc Am Soc Clin Oncol 16:522Google Scholar
  105. 105.
    Cairncross G, Swinnen L, Stiff P et al (1997) High-dose thiotepa with hematopoietic reconstitution (deferring radiation) for newly diagnosed aggressive oligodendroglioma. Proc Am Soc Clin Oncol 16:388Google Scholar
  106. 106.
    Goto S, Takeshita A, Sactome T et al (1997) Total body irradiation (TBI), VP-16, and thiotepa as a preparative regimen for autologous peripheral stem cell transplantation (PBSCT) in adult poor prognosis non-Hodgkin’s lymphoma (NHL): a preliminary report. Proc Am Soc Clin Oncol 16:388Google Scholar
  107. 107.
    Fischer PG, Kadan-Lottick, Korones DN (1997) Treatment of pediatric leptomeningeal metastases with intrathecal thiotepa: a retrospective clinical study. Proc Am Soc Clin Oncol 16:523Google Scholar
  108. 108.
    Cohen BE, Egorin MJ, Kohlhepp EA et al (1986) Humanplasma pharmacokinetics and urinary-excretion of thiotepa and its metabolites. Cancer Treat Rep 70:859–864PubMedGoogle Scholar
  109. 109.
    Ackland SP, Choi KE, Ratain MJ et al (1988) Humanplasma pharmacokinetics of thiotepa following administration of high-dose thiotepa and cyclophosphamide. J Clin Oncol 6:1192–1196PubMedGoogle Scholar
  110. 110.
    Manetta A, Tewari K, Podczaski ES (1997) Hexamethylamine as a single second-line agent in ovarian cancer: follow-up report and review of the literature. Gynecol Oncol 66:20–26PubMedCrossRefGoogle Scholar
  111. 111.
    D’lncalci M, Bolis G, Mangoni C et al (1978) Variable oral absorption of hexamethylmelamine in man. Cancer Treat Rep 62:2117–2119Google Scholar
  112. 112.
    Wingard JR, Plotnick LP, Freemer CS (1992) Growth in children after bone marrow transplantation; busulfan plus cyclophosphamide versus cyclophosphamide plus total body irradiation. Blood 79:1068–1073PubMedGoogle Scholar
  113. 113.
    Vassal G, Koscielny S, Challine D et al (1996) Busulfan disposition and hepatic veno-occlusive disease in children undergoing bone marrow transplantation. Cancer Chemother Pharmacol 37:247–253PubMedCrossRefGoogle Scholar
  114. 114.
    Jones RJ, Grochow LB (1995) Pharmacology of bone marrow transplantation conditioning regimens. Ann N Y Acad Sci 770:237–241PubMedCrossRefGoogle Scholar
  115. 115.
    Meresse V, Hartman O, Vassal G et al (1992) Risk factors for hepatic veno-occlusive disease after high-dose busulfancontaining regimens followed by autologous bone marrow transplantation: a study in 136 children. Bone Marrow Transplant 10:135–141PubMedGoogle Scholar
  116. 116.
    Grochow LB, Jones RJ, Brundrett RB et al (1989) Pharmacokinetics of busulfan: correlation with veno-occlusive disease in patients undergoing bone marrow transplantation. Cancer Chemother Pharmacol 25:55–61PubMedCrossRefGoogle Scholar
  117. 117.
    Stevens MFG, Hickman JA, Langdon SP et al (1987) Antitumor activity and pharmacokinetics in mice of 8-car bomyl-3-methyl-imidazo [5, l-d]-l, 2, 3, 5 terazin-4 (3H)-one (CCRG 81045; M&B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 47: 5846–5852PubMedGoogle Scholar
  118. 118.
    Newlands ES, Stevens MFG, Wedge SR et al (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23:35–61PubMedCrossRefGoogle Scholar
  119. 119.
    Newlands ES, O’Reilly SM, Glaser MG et al (1996) The Charing Cross Hospital experience with temozolomide in patients with gliomas. Eur J Cancer 32A:2236–2241PubMedCrossRefGoogle Scholar
  120. 120.
    Bleehen NM, Newlands ES, Lee SM et al (1995) Cancer Research Campaign Phase II trial of temozolomide in metastatic melanoma. J Clin Oncol 13:910–913PubMedGoogle Scholar
  121. 121.
    Baer JC, Freeman AA, Newlands ES et al (1993) Depletion of O6-alkylguanine-DNA alkyltransferase correlates with potentiation of temozolomide and CCNU toxicity in human tumor cells. Br J Cancer 67:1299–1302PubMedCrossRefGoogle Scholar
  122. 122.
    Tentori L, Orlando L, Lacal PM et al (1997) Inhibition of O6-alkylguanine DNA-alkyltransferase or poly (ADP-ribose) polymerase increases susceptibility of leukemic cells to apoptosis induced by temozolomide. Mol Pharmacol 52:249–258PubMedGoogle Scholar
  123. 123.
    Newlands ES, Blackledge GRP, Slack JA et al (1992) Phase I trial of temozolomide (CCRG 81045: M&B 39831: NSC 362856). Br J Cancer 65:287–291PubMedCrossRefGoogle Scholar
  124. 124.
    Punt CJA, van Herpen CML, Jansen RHL et al (1997) Chemoimmunotherapy with bleomycin, vincristine, lomustine, dacarbazine (BOLD) plus interferon (for metastatic melanoma: a multicentre phase II study. Br J Cancer 76:266–269PubMedCrossRefGoogle Scholar
  125. 125.
    Didolkar MS, Jackson A, Lesko L et al (1996) Pharmacokinetics of dacarbazine in the regional perfusion of extremities with melanoma. J Surg Oncol 63:148–158PubMedCrossRefGoogle Scholar
  126. 126.
    Breithaupt H, Dammann A, Aigner K (1982) Pharmacokinetics of dacarbazine (dtic) and its metabolite 5-aminoimidazole-4-carboxamide (aic) following different dose schedules. Cancer Chemother Pharmacol 9:103–109PubMedCrossRefGoogle Scholar
  127. 127.
    Souliatis VL, Kaila S, Boussiotis VA et al (1990) Accumulation of O6-methylguanine in human blood leukocyte DNA during exposure to procarbazine and its relationships with dose and repair. Cancer Res 50:2759–2764Google Scholar
  128. 128.
    Brandes A, Scelzi E, Ermani M et al (1997) Procarbazine plus high-dose tamoxifen in recurrent high-grade gliomas: a phase II trial. Proc Am Soc Clin Oncol 16:394Google Scholar
  129. 129.
    Lehman DF, Hurteau TE, Newman N et al (1997) Anticonvulsant usage is associated with an increased risk of procarbazine hypersensitivity reactions in patients with brain tumors. Clin Pharmacol Ther 62:225–229CrossRefGoogle Scholar
  130. 130.
    Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67: 1171–1176PubMedCrossRefGoogle Scholar
  131. 131.
    Loy SY, Mistry P, Kelland LR et al (1992) Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer 66:1109–1115CrossRefGoogle Scholar
  132. 132.
    Scanlon KJ, Kashani-Sabet M, Tone T et al (1991) Cisplatin resistance in human cancers. Pharmacol Ther 52: 385–406PubMedCrossRefGoogle Scholar
  133. 133.
    Mistry P, Kelland LR, Abel G et al (1991) The relationships between glutathione, glutathione-S-transferase and cytotoxicity of platinum drugs and melphalan in eight human ovarian carcinoma cell lines. Br J Cancer 64:215–220PubMedCrossRefGoogle Scholar
  134. 134.
    Himmelstein KJ, Patton TF, Belt RJ et al (1981) Clinical kinetics of intact cisplatin and some related species. Clin Pharmacol Ther 29:658–664PubMedCrossRefGoogle Scholar
  135. 135.
    Newell DR, Pearson ADJ, Balmano K et al (1993) Carboplatin pharmacokinetics in children: the development of a pediatric dosing formula. The United Kingdom Children’s Cancer Study Group. J Clin Oncol 11:2314–2323PubMedGoogle Scholar
  136. 136.
    Bén ézet S, Guimbaud R, Chatelut E et al (1997) How to predict carboplatin clearance from standard morphological and biological characteristics in obese patients. Ann Oncol 8:607–609CrossRefGoogle Scholar
  137. 137.
    Ando Yuichi, Minami H, Saka H et al (1997) Pharmacokinetic study of carboplatin given on a 5-day intravenous schedule. Jpn J Cancer Res 88:517–521PubMedCrossRefGoogle Scholar
  138. 138.
    Van Warmerdam LJC, Huizing MT, Giaccone G et al (1997) Clinical pharmacology of carboplatin administered in combination with paclitaxel. Semin Oncol 24[Suppl 2]:S2–97–S2–104PubMedGoogle Scholar
  139. 139.
    Verweij J, den Hartigh J, Pinedo HM (1990) Antitumor antibiotics. In: Chabner BA, Longo DL (eds) Cancer chemotherapy: principles and practice. Lippincott, Philadelphia, pp 382–396Google Scholar
  140. 140.
    Cummings J, Spanswick VJ, Smyth JF (1995) Re-evaluation of the molecular pharmacology of mitomycin C. Eur J Cancer 31A:1928–1933PubMedCrossRefGoogle Scholar
  141. 141.
    Dorr RT (1988) New findings in the pharmacokinetic, metabolic, and drug-resistance aspects of mitomycin C. Semin Oncol 15[Suppl 4]:32–41PubMedGoogle Scholar
  142. 142.
    Wu DC, Liu JM, Chen YM et al (1997) Mitomycin-C induced hemolytic uremic syndrome: a case report and literature review. Jpn J Clin Oncol 27:115–118PubMedCrossRefGoogle Scholar
  143. 143.
    Sommer A, Santi DV (1974) Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5’-fiuoro-2’-de-oxyuridylate and methylene tetrachloride. Biochem Biophys Res Commun 57:689–696PubMedCrossRefGoogle Scholar
  144. 144.
    Mandel G (1969) The incorporation of 5-fiuorouracil into RNA and its molecular consequences. In: Hahn FE (ed) Progress in molecular and subcellular biology. Springer, Berlin Heidelberg New York, pp 82–135CrossRefGoogle Scholar
  145. 145.
    Ghoshal K, Jacob ST (1997) An alternative molecular mechanism of action of 5-fiuorouracil, a potent anticancer drug. Biochem Pharmacol 53:1569–1575PubMedCrossRefGoogle Scholar
  146. 146.
    Gutheil J, Kearns C (1996) Antimetabolites. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 317–343Google Scholar
  147. 147.
    Kinsella AR, Smith D, Pickard M (1997) Resistance to chemotherapeutic antimetabolites: a function of salvage pathway involvement and cellular response to DNA damage. Br J Cancer 75:935–945PubMedCrossRefGoogle Scholar
  148. 148.
    Weber G (1993) Biochemical strategy of cancer cells and the design of chemotherapy: GHA Clowes Memorial Lecture. Cancer Res 43:3466–3492Google Scholar
  149. 149.
    Pickard M, Dive C, Kinsella AR (1996) Differences in resistance to 5-FU as a function of cell cycle delay and not age. Br J Cancer 72:1389–1396CrossRefGoogle Scholar
  150. 150.
    Fischel JL, Formento P, Etienne MC et al (1997) Dual modulation of 5-fiuorouracil cytotoxicity using folinic acid with a dihydropyrimidine dehydrogenase inhibitor. Biochem Pharmacol 53:1703–1709PubMedCrossRefGoogle Scholar
  151. 151.
    Christophidis N, Vadja FJE, Lucas I et al (1978) Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmacokinetic comparison of various rates and routes of administration. Clin Pharmacokinet 3:330–336CrossRefGoogle Scholar
  152. 152.
    Eatock MM, Carlin W, Dunlop DJ et al (1996) Bioavailability of subcutaneous 5-fiuorouracil: a case report. Cancer Chemother Pharmacol 38:110–112PubMedCrossRefGoogle Scholar
  153. 153.
    Heggie GD, Sommadossi J-P, Cross DS et al (1987) Clinical pharmacokinetics of 5-fiuorouracil and its metabolites in plasma, urine and bile. Cancer Res 47:2203–2206PubMedGoogle Scholar
  154. 154.
    Kissel J, Brix G, Belleman ME (1997) Pharmacokinetic analysis of 5-[18F]fiuorouracil tissue concentrations measured with positron emission tomography in patients with liver metastases from colorectal adenocarcinoma. Cancer Res 57:3415–3423PubMedGoogle Scholar
  155. 155.
    Ensminger WD, Rosowsky A, Raso V et al (1978) A clinicalpharmacological evaluation of hepatic arterial infusions of 5-fluoro-2’-deoxyuridine and 5-fiuorouracil. Cancer Res 38:3784–3792PubMedGoogle Scholar
  156. 156.
    Trevisani F, Simoncini M, Alampi G et al (1997) Colitis associated to chemotherapy with 5-fiuorouracil. Hepatogastroenterology 44:710–712PubMedGoogle Scholar
  157. 157.
    Feliu J, González-Bari M, Zamora P et al (1997) Experience of Oncopaz Cooperative Group with oral fluoropyrimidines in tumors of the stomach, lung, head and neck, and breast. Oncology 54:30–37PubMedCrossRefGoogle Scholar
  158. 158.
    Di Bartolomeo M, Bajetta E, Somma L et al (1996) Doxifluridine as palliative treatment in advanced gastric and pancreatic cancer patients. Oncology 53:54–57PubMedCrossRefGoogle Scholar
  159. 159.
    Takechi T, Nakano K, Uchida J et al (1997) Antitumor activity and low intestinal toxicity of S-1, a new formulation of oral tegafur, in experimental tumor models in rats. Cancer Chemother Pharmacol 39:205–211PubMedCrossRefGoogle Scholar
  160. 160.
    Abad A, Navarro M, Sastre J et al (1997) A preliminary report of a phase II trial. UFT plus oral folinic acid as therapy for metastatic colorectal cancer in older patients. Spanish Group for the Treatment of Gastrointestinal Tumors (TTd Group). Oncology (Huntingt) 11[9 Suppl 10]:53–57Google Scholar
  161. 161.
    González Baron M, Feliu J, Garcia Giron C et al (1997) UFT modulated with leucovorin in advanced colorectal cancer: oncopaz experience. Oncology 54:24–29PubMedCrossRefGoogle Scholar
  162. 162.
    Camps C, Godes M, Soler JJ (1990) Possible cardiotoxicity induced by orally administered fluoropyrimidines. Ann Med Interna 7:525–527Google Scholar
  163. 163.
    Tsukioka Y, Matsumura Y, Hamaguchi T et al (2001) Complete response achieved following administration of S1 in a patient with adrenal gland metastasis of 5-FU-re-sistant gastric cancer: a case report. Jpn J Clin Oncol 31: 450–453PubMedCrossRefGoogle Scholar
  164. 164.
    Bajetta E, Carnaghi C, Somma L et al (1996) A pilot safety study of capecitabine, a new oral fluoropyrimidine, in patients with advanced neoplastic disease. Tumori 82:450–452PubMedGoogle Scholar
  165. 165.
    Keizer HJ, De Bruijin EA, Tjaden UR et al (1994) Inhibition of fluorouracil catabolism in cancer patients by the antiviral agent (E)-5-(2-bromovinyl)-2’-deoxyuridine. J Cancer Res Clin Oncol 120:545–549PubMedCrossRefGoogle Scholar
  166. 166.
    Daher GC, Harris BE, Diaso RB (1990) Metabolism of pyrimidine analogues and their nucleosides. Pharmacol Ther 48:189–222PubMedCrossRefGoogle Scholar
  167. 167.
    Baker SD, Khor SP, Adjei AA et al (1996) Pharmacokinetic, oral bioavailability, and safety study of fluorouracil in patients treated with 776C85, an inactivator of dihydropyrimidine dehydrogenase. J Clin Oncol 14:3085–3096PubMedGoogle Scholar
  168. 168.
    Khor SP, Amyx H, Davis ST et al (1997) Dihydropyrimidine dehydrogenase inactivation and 5-fluorouracil pharmacokinetics: allometric scaling of animal data, pharmacokinetics and toxicodynamics of 5-fluorouracil in humans. Cancer Chemother Pharmacol 39:233–238PubMedCrossRefGoogle Scholar
  169. 169.
    Cao S, Baccanari DP, Joyner SS et al (1995) 5-Ethynluracil (776C85): effects on the antitumor activity and pharmacokinetics of tegafur, a prodrug of 5-fluorouracil. Cancer Res 55:6227–6230PubMedGoogle Scholar
  170. 170.
    Huang P, Plunkett W (1995) Fludarabine and gemcita bine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 36: 181–188PubMedCrossRefGoogle Scholar
  171. 171.
    Ruiz van Haperen VWT, Veerman G, Vermorken JB et al (1993) 2’, 2’-Difluoro-deoxycytidine (gemcitabine) incorporation into RNA and DNA of tumor cell lines. Biochem Pharmacol 46:762–766CrossRefGoogle Scholar
  172. 172.
    Manegold C, Drings P, von Pawel J et al (1997) A randomized study of gemcitabine monotherapy versus etoposide/cisplatin in the treatment of locally advanced or metastatic non-small cell lung cancer. Semin Oncol 24 [Suppl 8]:S8–13–S8–17Google Scholar
  173. 173.
    Anderson H, Lund B, Bach F et al (1994) Single-agent activity of weekly gemcitabine in advanced non-small cell lung cancer: a phase II study. J Clin Oncol 12:1821–1826PubMedGoogle Scholar
  174. 174.
    Noble S, Goa KL (1997) Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs 54:447–472PubMedCrossRefGoogle Scholar
  175. 175.
    Catimel G, Vermorken JB, Clavel M et al (1994) A phase II study of gemcitabine (LY 188011) in patients with advanced squamous cell carcinoma of the head and neck. Ann Oncol 5:543–547PubMedGoogle Scholar
  176. 176.
    Lund B, Hansen OP, Theilade K et al (1994) Phase II study of gemcitabine (2’,2’-difluoro-deoxycytidine) in previously treated ovarian cancer patients. J Natl Cancer Inst 86:1530–1533PubMedCrossRefGoogle Scholar
  177. 177.
    Carmichael J, Walling J (1997) Advanced breast cancer: investigating role of gemcitabine. Eur J Cancer 33[Suppl 1]: S27–S30PubMedCrossRefGoogle Scholar
  178. 178.
    Stadler WM, Kuzel T, Roth B et al (1997) Phase II study of single-agent gemcitabine in previously untreated patients with metastatic urothelial cancer. J Clin Oncol 11:3394–3398Google Scholar
  179. 179.
    Santoro A, Devizzi L, Bonfante V et al (1997) Phase II study with gemcitabine in pretreated patients with Hodgkin’s (HD) and non-Hodgkin’s lymphomas (NHL): results of a multicenter study. Proc Am Soc Clin Oncol 16:21Google Scholar
  180. 180.
    Abbruzzese JL, Grunewald R, Weeks EA et al (1991) A phase I clinical, plasma and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498PubMedGoogle Scholar
  181. 181.
    Grunewald R, Abbruzzese JL, Tarassoff P et al (1991) Saturation of 2’, 2’-difluorodeoxcytidine 5’-triphosphate accumulation by mononuclear cells during a phase I trial of gemcitabine. Cancer Chemother Pharmacol 27:258–262PubMedCrossRefGoogle Scholar
  182. 182.
    Malayeri R, Krajnik G, Ohler L et al (1997) Delayed anemia and thrombocytopenia after treatment with gemcitabine. J Nati Cancer Inst 89:1164Google Scholar
  183. 183.
    Cozzarelli NR (1977) The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 46:641–668PubMedCrossRefGoogle Scholar
  184. 184.
    Estey E, Keating MJ, McCredie KB et al (1990) Cellular ara CTP pharmacokinetics, response and karyotype in newlydiagnosed acute myelogenous leukemia. Leukemia 4:95–99PubMedGoogle Scholar
  185. 185.
    Plunkett W, Gandhi V (1994) Evolution of the arabinosides and the pharmacology of fludarabine. Drugs 47 [Suppl 6]:30–38PubMedCrossRefGoogle Scholar
  186. 186.
    Lennard L, Lilleyman JS (1996) Individualizing therapy with 6-mercaptopurine and 6-thioguanine related to the thiopurine methyltransferase genetic polymorphism. Ther Drug Monit 18:328–334PubMedCrossRefGoogle Scholar
  187. 187.
    Bostrom B, Erdmann (1993) Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. Pediatr Hematol Oncol 15:80–86CrossRefGoogle Scholar
  188. 188.
    Nelson JA, Carpenter JW, Rose LM et al (1975) Mechanisms of action of 6-thioguanine, 6-mercaptopurine, and 8-azaguanine. Cancer Res 35:2872–2878PubMedGoogle Scholar
  189. 189.
    Koren G, Ferrazini G, Sulh H et al (1990) Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 323:17–21PubMedCrossRefGoogle Scholar
  190. 190.
    Schmiegelow K, Bruunshuus I (1990) 6-Thioguanine nucleotide accumulation in red blood cells during maintenance chemotherapy for childhood acute lymphoblastic leukemia, and its relation to leukopenia. Cancer Chemother Pharmacol 26:288–292PubMedCrossRefGoogle Scholar
  191. 191.
    Aarbakke J, Janka-Schaub G, Elion GB (1997) Thiopurine biology and pharmacology. Trends Pharmacol Sci 18:3–7PubMedCrossRefGoogle Scholar
  192. 192.
    Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43:329–339PubMedCrossRefGoogle Scholar
  193. 193.
    Pinkel D (1993) Intravenous mercaptopurine: life begins at 40. J Clin Oncol 11:1826–1831PubMedGoogle Scholar
  194. 194.
    Berkovitch M, Matsui D, Zipursky A et al (1996) Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol 26:85–89PubMedCrossRefGoogle Scholar
  195. 195.
    Ingle JN, Twito D, Suman VJ et al (1997) Evaluation of intravenous 6-thioguanine as first-line chemotherapy in women with metastatic breast cancer. Am J Clin Oncol 20:69–72PubMedCrossRefGoogle Scholar
  196. 196.
    Aubrecht J, Goad MEP, Schiestl RH (1997) Tissue-specific toxicities of the anticancer drug 6-thioguanine is dependent on the Hprt status in transgenic mice. J Pharmacol Exp Ther 282:1102–1108PubMedGoogle Scholar
  197. 197.
    Lu K, Benvenuto JA, Bodey GP et al (1982) Pharmacokinetics and metabolism of beta-2’-deoxythioguanosine and 6-thioguanine in man. Cancer Chemother Pharmacol 8:119–123PubMedCrossRefGoogle Scholar
  198. 198.
    Adkins JC, Peters DH, Markham A (1997) Fludarabine. An update of its pharmacology and use in the treatment of hematological malignancies. Drugs 53:1005–1037PubMedGoogle Scholar
  199. 199.
    Decaudin D, Bosq J, Tertian G et al (1998) Phase II trial of fludarabine monophosphate in patients with mantle-cell lymphomas. J Clin Oncol 16:579–583PubMedGoogle Scholar
  200. 200.
    Brockman RW, Cheng YC, Schabel FM Jr et al (1980) Metabolism and chemotherapeutic activity of 9-beta-D-arabinofuranosyl-2-fluoroadenine against murine leukemia L1210 and evidence for its phosphorylation by deoxycytidine kinase. Cancer Res 40:3610–3615PubMedGoogle Scholar
  201. 201.
    Cohen JD, Strock DJ, Braun TJ (1997) Deoxycytidine in human plasma: protection of leukemic cells during chemotherapy. Proc Am Soc Clin Oncol 16:4Google Scholar
  202. 202.
    O’Rourke TJ, Burris HA, Rodriguez GI et al (1997) Phase I pharmacokinetic and bioavailability study of five daily intravenous and oral doses of fludarabine phosphate in patients with advanced cancer. Proc Am Soc Clin Oncol 16: 210Google Scholar
  203. 203.
    Griffig J, Koob R, Blakey RL (1989) Mechanisms of inhibition of DNA synthesis by 2-chlorodeoxyadenosine in human lymphoblastic cells. Cancer Res 49:6923–6928PubMedGoogle Scholar
  204. 204.
    Kong LR, Samuelson E, Rosen ST et al (1997) 2-Chlorodeoxyadenosine in cutaneous T-cell lymphoproliferative disorders. Leuk Lymphoma 26:89–97PubMedCrossRefGoogle Scholar
  205. 205.
    Larson RA, Mick R, Spielberger RT et al (1996) Dose-escalation trial of cladribine using five daily intravenous infusions in patients with advanced hematologic malignancies. J Clin Oncol 14:188–195PubMedGoogle Scholar
  206. 206.
    Liliemark J (1997) The clinical pharmacokinetics of cladribine. Clin Pharmacokinet 32:120–137PubMedCrossRefGoogle Scholar
  207. 207.
    Liliemark J, Juliusson G (1991) On the pharmacokinetics of 2-chloro-2’-deoxyadenosine in humans. Cancer Res 51: 5570–5572PubMedGoogle Scholar
  208. 208.
    Kearns CM, Blakley RL, Santana VM et al (1994) Pharmacokinetics of cladribine (2-chlorodeoxyadenisine) in children with acute leukemia. Cancer Res 54:1235–1239PubMedGoogle Scholar
  209. 209.
    Di Costanzo F, El-Taani H, Parriani D et al (1996) Hydroxyurea may increase the activity of fluorouracil plus folinic acid in advanced gastrointestinal cancer: phase II study. Cancer Invest 14:234–238PubMedCrossRefGoogle Scholar
  210. 210.
    Stehman FB, Bundy BN, Kucera PR et al (1997) Hydroxyurea, 5-fluorouracil infusion, and cisplatin adjunct to radiation therapy in cervical carcinoma: a phase I—II trial of the Gynecologic Oncology Group. Gynecol Oncol 66:262–267PubMedCrossRefGoogle Scholar
  211. 211.
    Brockstein B, Haraf DJ, Stenson K et al (1998) Phase I study of concomitant chemoradiotherapy with paclitaxel, fluorouracil, and hydroxyurea with granulocyte colony-stimulating factor support for patients with poorprognosis cancer of the head and neck. J Clin Oncol 16: 735–744PubMedGoogle Scholar
  212. 212.
    Yarbro JW (1992) Mechanism of action of hydroxyurea. Semin Oncol 19[3 Suppl 9]:l–10Google Scholar
  213. 213.
    Newman EM, Carroll M, Akman SA et al (1997) Pharmacokinetics and toxicity of 120-hour continuous-infusion hydroxyurea in patients with advanced solid tumors. Cancer Chemother Pharmacol 39:254–258PubMedCrossRefGoogle Scholar
  214. 214.
    Tracewell WG, Trump DL, Vaughan WP et al (1995) Population pharmacokinetics of hydroxyurea in cancer patients. Cancer Chemother Pharmacol 35:417–422PubMedCrossRefGoogle Scholar
  215. 215.
    Navarra P, Grohmann U, Nocentini G et al (1997) Hydroxyurea induces the gene expression and synthesis of proinflammatory cytokines in vivo. J Pharmacol Exp Ther 280:477–482PubMedGoogle Scholar
  216. 216.
    Allegra CJ (1990) Antifolates. In: Chabner BA, Collins JA (eds) Cancer chemotherapy. Principles and practice. Lippincott, Philadelphia, pp 110–153Google Scholar
  217. 217.
    Delpine N, Delepine G, Bacci G et al (1996) Influence of methotrexate dose intensity on outcome of patients with high-grade osteogenic sarcoma. Analysis of the literature. Cancer 78:2127–2135CrossRefGoogle Scholar
  218. 218.
    Egan LJ, Sandborn WJ (1996) Methotrexate for inflammatory bowel disease: pharmacology and preliminary results. Mayo Clin Proc 71:69–80PubMedCrossRefGoogle Scholar
  219. 219.
    Lonn U, Lonn S, Nilsson B et al (1996) Higher frequency of gene amplification in breast cancer patients who received adjuvant chemotherapy. Cancer 77:107–112PubMedCrossRefGoogle Scholar
  220. 220.
    Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419PubMedCrossRefGoogle Scholar
  221. 221.
    DeAngelis LM, Tong WP, Lin S et al (1996) Carboxypeptidase G2 rescue after high-dose methotrexate. J Clin Oncol 14:2145–2149PubMedGoogle Scholar
  222. 222.
    Hum MC, Kamen BA (1996) Folate, antifolates, and folate analogs in pediatric oncology. Invest New Drugs 14:101–111PubMedCrossRefGoogle Scholar
  223. 223.
    Rogers P, Allegra CJ, Murphy RF et al (1988) Bioavailability of oral trimetrexate in patients with acquired immunodeficiency syndrome. Antimicrob Agents Chemother 32:3 24–326CrossRefGoogle Scholar
  224. 224.
    Judson IR (1997) Tomudex (raltitrexed) development: preclinical, phase I and II studies. Anticancer Drugs 8 [Suppl 2]:S5–S9PubMedCrossRefGoogle Scholar
  225. 225.
    Cunningham D, Zalcberg J, Smith I et al (1996) ’Tomudex’ (ZD 1694): a novel thymidylate synthase inhibitor with clinical antitumor activity in a range of solid tumors.’ Tomudex’ International Study Group. Ann Oncol 7:179–182PubMedCrossRefGoogle Scholar
  226. 226.
    Stevenson JP, Redlinger M, Kluijtmans LA et al (2001) Phase I clinical and pharmacogenetic trial of irinotecan and raltitrexed administered every 21 days to patients with cancer. J Clin Oncol 19:4081–4087PubMedGoogle Scholar
  227. 227.
    Gianni L (1997) Anthracycline resistance: the problem and its current definition. Semin Oncol 24[4 Suppl 10]:S10–11–S10–17PubMedGoogle Scholar
  228. 228.
    Fogleson PD, Reckford C, Swink S (1992) Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol 30:123–125CrossRefGoogle Scholar
  229. 229.
    Linn SC, Pinedo HM, Van Ark-Otte J et al (1997) Expression of drug resistance proteins in breast cancer, in relation to chemotherapy. Int J Cancer 71:787–795PubMedCrossRefGoogle Scholar
  230. 230.
    Bachur NR, Gordon SL, Gee MW (1977) Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation. Mol Pharmacol 13:901–910PubMedGoogle Scholar
  231. 231.
    Sweatman TW, Israel M (1997) Anthracyclines. In: Teicher B (ed) Cancer therapeutics: experimental and clinical agents. Humana Press, Totowa, pp 113–136Google Scholar
  232. 232.
    Doroshow JH (1983) Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Res 43:460–472PubMedGoogle Scholar
  233. 233.
    Myers CE, McGuire WP, Liss RH et al (1977) Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science 197:165–167PubMedCrossRefGoogle Scholar
  234. 234.
    Bottone AE, de Beer EL, Voest EE (1997) Anthracyclines enhance tension development in cardiac muscle by direct interaction with the contractile system. J Mol Cell Cardiol 29:1001–1008PubMedCrossRefGoogle Scholar
  235. 235.
    Robert J, Gianni L (1993) Pharmacokinetics and metabolism of anthracyclines. Cancer Surv 17:219–252PubMedGoogle Scholar
  236. 236.
    Von Hoff DD, Rozencweig M, Leyard M et al (1977) Daunomycin-induced cardiotoxicity in children and adults. A review of 110 cases. Am J Med 62:200–208CrossRefGoogle Scholar
  237. 237.
    Riggs CE Jr (1996) Antitumor antibiotics and related compounds. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 345–385Google Scholar
  238. 238.
    Antoine E, Chollet P, Montardini S et al (1997) Sequential administration of docetaxel (D) followed by doxorubicin (A) in combination with cyclophosphamide (C) as firstline chemotherapy for metastatic breast cancer (MBC): preliminary results. Proc Am Soc Clin Oncol 16:159Google Scholar
  239. 239.
    Speyer J, Green MD, Kramer E et al (1988) Protective effect of the bispiperazinedione ICRF-187 against doxorubicininduced cardiac toxicity in women with advanced breast cancer. N Engl J Med 319:745–752PubMedCrossRefGoogle Scholar
  240. 240.
    Rahman A, Goodman A, Foo W et al (1984) Clinical pharmacology of daunorubicin in phase I patients with solid tumors: development of an analytical methodology for daunorubicin and its metabolites. Semin Oncol 11[Suppl 3]:36–44PubMedGoogle Scholar
  241. 241.
    Riggs CE (1984) Clinical pharmacology of daunorubicin in patients with acute leukemia. Semin Oncol 11[Suppl 3]: 2–11PubMedGoogle Scholar
  242. 242.
    Capranico G, De Isabella P, Penco S et al (1989) Role of DNA breakage in cytotoxicity of doxorubicin, 9-deoxydoxorubicin, and 4-demethyl-6-deoxydoxorubicin in murine leukemia P388 cells. Cancer Res 49:2022–2027PubMedGoogle Scholar
  243. 243.
    Woods KE, Ellis AL, Randolph JK et al (1989) Enhanced sensitivity of the rat hepatoma cell to the daunorubicin analogue 4-demethoxydaunorubicin associated with the induction of DNA damage. Cancer Res 49:4846–4851PubMedGoogle Scholar
  244. 244.
    Camaggi CM, Strocchi E, Carisi P et al (1992) Idarubicin metabolism and pharmacokinetics after intravenous and oral administration in cancer patients: a crossover study. Cancer Chemother Pharmacol 30:307–316PubMedCrossRefGoogle Scholar
  245. 245.
    Coukell AJ, Faulds D (1997) Epirubicin. An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs 53:453–482PubMedCrossRefGoogle Scholar
  246. 246.
    Sengör F, Beysel M, Erdogan K et al (1996) Intravesical epirubicin in the prophylaxis of superficial bladder cancer. Int Urol Nephrol 28:201–206PubMedCrossRefGoogle Scholar
  247. 247.
    Budman DR, Lichtman SM (1996) Investigational drugs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 479–555Google Scholar
  248. 248.
    Galvez C, Bonicatto S, Cavarra G et al (1997) High-dose epirubicin in advanced breast cancer patients. Proc Am Soc Clin Oncol 16:169Google Scholar
  249. 249.
    Innocenti F, Iyer L, Ramirez J et al (2001) Epirubicin glucuronidation is catalyzed by human UDP-glucuronosyltransferase 2B7. Drug Metab Dispos 29:686–692PubMedGoogle Scholar
  250. 250.
    Ballestrero A, Ferrando F, Garuti A et al (1997) High-dose mitoxantrone with peripheral blood progenitor cell rescue: toxicity, pharmacokinetics and implications of dosage and schedule. Br J Cancer 76:797–804PubMedCrossRefGoogle Scholar
  251. 251.
    Sobell HM (1973) The stereochemistry of actinomycin binding to DNA and its implications in molecular biology. Prog Nucleic Acid Res Mol Biol 13:153–190PubMedCrossRefGoogle Scholar
  252. 252.
    Waksman Conference on Actinomycins (1974) Their potential for cancer chemotherapy. Cancer Chemother Rep 58:1–123Google Scholar
  253. 253.
    Frei E (1974) The clinical use of actinomycin. Cancer Chemother Rep 58:49–54PubMedGoogle Scholar
  254. 254.
    Mehta MP, Bastin KT, Wiersma SR (1991) Treatment of Wilms tumor. Current recommendations. Drugs 42:766–780PubMedCrossRefGoogle Scholar
  255. 255.
    Manfredi JJ, Horwitz SB (1984) Taxol: an antimitotic agent with a new mechanism of action. Pharm Ther 25:83–125CrossRefGoogle Scholar
  256. 256.
    Hyams JS, Lloyd CW (1993) In: Harford JB (ed) Microtubules (Modern cell biology series, vol 13). Wiley Liss, New York, p 460Google Scholar
  257. 257.
    Wadsworth P (1993) Mitosis: spindle assembly and chromosome motion. Curr Opin Cell Biol 5:123–128PubMedCrossRefGoogle Scholar
  258. 258.
    Rowinsky EK, Wright M, Monsarrat B et al (1993) Taxol: pharmacology, metabolism and clinical implications. Cancer Surv 17:283–304PubMedGoogle Scholar
  259. 259.
    Roth BJ, Finch DE, Birhle R et al (1997) A phase II trial of ifosfamide + paclitaxel (IT) in advanced transitional cell carcinoma of the urothelium. Proc Am Soc Clin Oncol 16:324Google Scholar
  260. 260.
    Schnack B, Grbovic M, Brodowicz T et al (1997) High effectivity of a combination of Taxol with carboplatin in the treatment of metastatic urothelial cancer. Proc Am Soc Clin Oncol 16:325Google Scholar
  261. 261.
    Rose PG, Blessing JA, Gershenson DM (1997) Paclitaxel and cisplatin as first-line therapy in recurrent or advanced squamous cell carcinoma of the cervix: a Gynecologic Oncology Group (GOG) study. Proc Am Soc Clin Oncol 16:363Google Scholar
  262. 262.
    Ajani JA, Fairweather J, Dumas P et al (1997) A phase II study of Taxol in patients with advanced untreated gastric carcinoma. Proc Am Soc Clin Oncol 16:263Google Scholar
  263. 263.
    Younes A, Preti A, Romaguera J et al (1997) Activity of Taxol and high-dose Cytoxan with granulocyte colonystimulating factor (G-CSF) in 54 patients with relapsed/refractory non-Hodgkin’s lymphoma (NHL). Proc Am Soc Clin Oncol 16:21Google Scholar
  264. 264.
    Colomer R, Montere S, Lluch A et al (1997) Circulating HER-2/neu predicts resistance to Taxol/Adriamycin in metastatic breast carcinoma: preliminary results of a multicentric prospective study. Proc Am Soc Clin Oncol 16:140Google Scholar
  265. 265.
    Rowinsky E, Smith L, Chaturvedi P et al (1997) Pharmacokinetic (PK) and toxicologie interactions between the multidrug resistance reversal agent VX-710 and paclitaxel (P) in cancer patients. Proc Am Soc Clin Oncol 16:218Google Scholar
  266. 266.
    Kuhn J, Rizzo J, Chang S et al (1997) Effects of anticonvulsants (Acs) on the pharmacokinetics (PK) and metabolic profile of paclitaxel. Proc Am Soc Clin Oncol 16:224Google Scholar
  267. 267.
    Markman M, Rowinsky E, Hakes T et al (1992) Phase I trial of Taxol administered by the intraperitoneal route: a Gynecologic Oncology Group study. J Clin Oncol 10: 1485–1491PubMedGoogle Scholar
  268. 268.
    Huizing MT, Misser VHS, Pieters RC et al (1995) Taxanes: a new class of antitumor agents. Cancer Inv 13:381–404CrossRefGoogle Scholar
  269. 269.
    Gianni L, Kearns C, Gianni A et al (1995) Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 13:180–190PubMedGoogle Scholar
  270. 270.
    Venook AP, Egorin MJ, Rosner GL et al (1998) A phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: CALGB 9264. J Clin Oncol 16: 1811–1819PubMedGoogle Scholar
  271. 271.
    Cagnoni PJ, Nieto Y, Shpall EJ et al (1997) Pulmonary toxicity secondary to paclitaxel (PAC)-containing high-dose chemotherapy (HDC). Proc Am Soc Clin Oncol 16:232Google Scholar
  272. 272.
    Hurwitz A, Relling M, Ragab A et al (1993) Phase I trial of Taxol in children with refractory solid tumors: a Pediatrie Oncology Group study. Proc Am Soc Clin Oncol 12:1410Google Scholar
  273. 273.
    Ringel I, Horwitz SB (1991) Studies with RP 56976 (taxotere): a semisynthetic analogue of Taxol. J Nati Cancer Inst 83:288–291CrossRefGoogle Scholar
  274. 274.
    Horwitz SB (1992) Mechanism of action of Taxol. Trends Pharmacol Sci 13:134–136PubMedCrossRefGoogle Scholar
  275. 275.
    Hennequin N, Giocanti N, Favaudon V (1995) S-phase specificity of cell killing by docetaxel (taxotere) in synchronized HeLa cells. Br J Cancer 71:1194–1198PubMedCrossRefGoogle Scholar
  276. 276.
    Seibel NL, Blaney SM, O’B rien M et al (1997) Pediatrie phase I trial of docetaxel (D) with G-CSF: a collaborative pediatrie branch, NCI and Children’s Cancer Group trial. Proc Am Soc Clin Oncol 16:220Google Scholar
  277. 277.
    Bruno R, Sanderink GJ (1993) Pharmacokinetics and Metabolism of TaxotereTM (Docetaxel). Cancer Surv 17:305–313PubMedGoogle Scholar
  278. 278.
    De Valeriola D, Brassinne C, Cpillard C (1993) Study of excretion balance, metabolism and protein binding of C14 radiolabelled taxotere (RP 56976, NSC 628503) in cancer patients. Proc Am Assoc For Cancer Res 34:373Google Scholar
  279. 279.
    Gelmon K (1994) The taxoids: paclitaxel and docetaxel. Lancet 344:1267–1272PubMedCrossRefGoogle Scholar
  280. 280.
    Cabrai FR, Barlow SB (1991) Resistance to the antimitotic agents as genetic probes of microtubule structure and function. Pharmacol Ther 52:159–171CrossRefGoogle Scholar
  281. 281.
    Endicott JA, Ling V (1989) The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58:137–171PubMedCrossRefGoogle Scholar
  282. 282.
    Kuss BJ, Deeley RG, Cole SPC et al (1994) Deletion of gene for multidrug resistance in acute myeloid leukemia with inversion in chromosome 16: prognostic implications. Lancet 343:1531–1534PubMedCrossRefGoogle Scholar
  283. 283.
    Rahmani R, Zhou X-J (1993) Pharmacokinetics and metabolism of vinca alkaloids. Cancer Surv 17:269–281PubMedGoogle Scholar
  284. 284.
    Rowinsky EK, Donehower RC (1991) The clinical pharmacology and use of antimicrotubule agents in cancer chemotherapeutics. Pharmacol Ther 52:35–84PubMedCrossRefGoogle Scholar
  285. 285.
    Bender RA, Castle MC, Margileth DA et al (1977) The pharmacokinetics of [3H]-vincristine in man. Clin Pharmacol Ther 22:430–438PubMedGoogle Scholar
  286. 286.
    Wehbe T, Akerley W, Stein B et al (1997) Strontium-89, estramustine and vinblastine (SEV) in hormone refractory prostate carcinoma (HRPC): concurrent chemoradiotherapy. Proc Am Soc Clin Oncol 16:312Google Scholar
  287. 287.
    Hudes G, Roth B, Loehrer P et al (1997) Phase II trial of vinblastine versus vinblastine plus estramustine phosphate for metastatic hormone refractory prostate cancer (HRPC). Proc Am Soc Clin Oncol 16:316Google Scholar
  288. 288.
    Bonfante V, Santoro A, Viviani S et al (1997) Ifosfamide (IFX) and vinorelbine (VNR), an active regimen potentially effective in detecting sensitive relapses in Hodgkin’s disease (HD). Proc Am Soc Clin Oncol 16:9Google Scholar
  289. 289.
    Errante D, Spina M, Tavio M et al (1997) Evidence of activity of vinorelbine (VNR) in patients (pts) with previously treated epidemic Kaposi’s sarcoma (KS). Proc Am Soc Clin Oncol 16:42Google Scholar
  290. 290.
    Oliveira J, Geoffrois L, Rolland F et al (1997) Activity of Navelbine on lesions within previously irradiated fields in patients with metastatic and/or local recurrent squamous cell carcinoma of the head and neck (SCHNC): an EORTC-ECSG study. Proc Am Soc Clin Oncol 16:406Google Scholar
  291. 291.
    Canfield VA, Saxman SB, Kolodzei MA et al (1997) Phase II trial of vinorelbine in advanced or recurrent squamous cell carcinoma (SCCa) of the head and neck. Proc Am Soc Clin Oncol 16:387Google Scholar
  292. 292.
    Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol 34:191–218PubMedCrossRefGoogle Scholar
  293. 293.
    Beck WT, Kim R, Chein M (1994) Novel actions of inhibitors of DNA topoisomerase II in drug-resistant tumor cells. Cancer Chemother Pharmacol 34 [Suppl]}:S14–S18PubMedCrossRefGoogle Scholar
  294. 294.
    Yves P (1996) Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins. Semin Oncol 23[Suppl3]:3–10Google Scholar
  295. 295.
    Ewesuedo R, Ratain MJ (1997) Topoisomerase I inhibitors. Oncologist 2:359–364PubMedGoogle Scholar
  296. 296.
    Shimada Y, Rothenberg M, Hilsenbeck SG et al (1994) Activity of CPT-11 (irinotecan hydrochloride), a topoisomerase I inhibitor, against human tumor colony-forming units. Anticancer Drugs 5:202–206PubMedCrossRefGoogle Scholar
  297. 297.
    Wagener DJ, Verdonk HE, Dirix et al (1995) Phase II trial of CPT-11 in patients with advanced pancreatic cancer, an EORTC early clinical trials group study. Ann Oncol 6:129–132PubMedGoogle Scholar
  298. 298.
    Saltz LB (1997) Clinical use of irinotecan: current status and future considerations. Oncologist 2:402–409PubMedGoogle Scholar
  299. 299.
    Lavelle F, Bissery MC, Andre S et al (1996) Preclinical evaluation of CPT-11 and its active metabolite SN-38. Semin Oncol 23[Suppl3]:ll–20Google Scholar
  300. 300.
    Takaoka K, Ohtsuka K, Jin M et al (1997) Conversion of CPT-11 to its active form, SN-38, by carboxylesterase of non-small cell lung cancer. Proc Am Soc Clin Oncol 16:252AGoogle Scholar
  301. 301.
    Chabot GG, Abigerges D, Catimel G et al (1995) Population pharmacokinetics and pharmacodynamics of irinotecan (CPT-11) and active metabolite SN-38 during phase I trials. Ann Oncol 6:141–151PubMedGoogle Scholar
  302. 302.
    Gupta E, Lestingi TM, Mick R et al (1994) Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res 54:3723–3725PubMedGoogle Scholar
  303. 303.
    Gupta E, Wang X, Ramirez J etal (1997) Modulation of glucuronidation of SN-38, the active metabolite of irinotecan, by valproic acid and phenobarbital. Cancer Chemother Pharmacol 39:440–444PubMedCrossRefGoogle Scholar
  304. 304.
    Pappo AS, Lyden E, Breneman J et al (2001) Up-front window trial of topotecan in previously untreated children and adolescents with metastatic rhabdomyosarcoma: an intergroup rhabdomyosarcoma study. J Clin Oncol 19: 213–219PubMedGoogle Scholar
  305. 305.
    Schellens JH, Creemers AJ, Beijnen JH et al (1996) Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br J Cancer 73:1268–1271PubMedCrossRefGoogle Scholar
  306. 306.
    Herben VM, ten Bokkel Huinink WW, Beijnen JH (1996) Clinical pharmacokinetics of topotecan. Clin Pharmacokinet 31:85–102PubMedCrossRefGoogle Scholar
  307. 307.
    Pui CH, Behm FG, Raimondi SC et al (1989) Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med 321:136–142PubMedCrossRefGoogle Scholar
  308. 308.
    Ratain, MJ, Kaminer LS, Bitran JD et al (1987) Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small cell carcinoma of the lung. Blood 70:1412–1417PubMedGoogle Scholar
  309. 309.
    Joel S (1996) The clinical pharmacology of etoposide: an Update. Cancer Treat Rev 22:179–221PubMedCrossRefGoogle Scholar
  310. 310.
    Ratain MJ, Mick R, Schilsky RL et al (1991) Pharmacologically based dosing of etoposide: a means of safely increasing dose intensity. J Clin Oncol 9:1480–1486PubMedGoogle Scholar
  311. 311.
    Stewart CF (1994) Use of etoposide in patients with organ dysfunction: pharmacokinetic and pharmacodynamic considerations. Cancer Chemother Pharmacol 34[Suppl]: S76–S83PubMedCrossRefGoogle Scholar
  312. 312.
    Arbuck SG, Douglas HO, Crom WR et al (1986) Etoposide pharmacokinetics in patients with normal and abnormal organ functions. J Clin Oncol 4:1690–1695PubMedGoogle Scholar
  313. 313.
    Macbeth FR (1982) VM 26: phase I and II studies. Cancer Chemother Pharmacol 7:87–91PubMedCrossRefGoogle Scholar
  314. 314.
    Henter JI, Elinder G, Finkel Y et al (1986) Successful induction with chemotherapy including teniposide in familial erythrophagocytic lymphohistiocytosis. Lancet 2: 1402PubMedCrossRefGoogle Scholar
  315. 315.
    Hong WK, Lippman SM, Itri LM et al (1990) Prevention of secondary primary tumors with isotretinoin in squamouscell carcinoma of the head and neck. N Engl J Med 323:795–801PubMedCrossRefGoogle Scholar
  316. 316.
    Atiba J, Jamil S, Meyskens FJ et al (1994) Transretinoic acid (tRA) in the treatment of malignant gliomas (MG): a phase II study. Proc Am Soc Clin Oncol 13:178Google Scholar
  317. 317.
    Weiss GR, Liu PY, Alberts DS et al (1997) A randomized phase II trial of 13-cis-retinoic acid (CRA) or all-transretinoic acid (ATRA) plus interferon alpha 2a (IFN) for metastatic or recurrent squamous/adenosquamous carcinoma of the uterine cervix: a Southwest Oncology Group study. Proc Am Soc Clin Oncol 13:178Google Scholar
  318. 318.
    Sutton LM, Warmuth MA, Petros WP et al (1997) Pharmacokinetics and clinical impact of all-trans retinoic acid in metastatic breast cancer: a phase II trial. Cancer Chemother Pharmacol 40:335–341PubMedCrossRefGoogle Scholar
  319. 319.
    Khuri FR, Winn RJ, Lee JJ et al (1997) Run in phase: an effective screening tool for a randomized chemoprevention trial. Proc Am Soc Clin Oncol 16:539Google Scholar
  320. 320.
    DiPola RS, Weiss R, Goodin S et al (1997) The clinical and biological effects of 13 cis-retinoic acid (CRA) and alpha interferon (IFN-A) in patients with prostate-specific antigen (PSA) progression after initial local therapy for prostate cancer. Proc Am Soc Clin Oncol 16:332Google Scholar
  321. 321.
    Chatterjee M, Banerjee MR (1982) Influence of hormones on N-(4-hydroxyphenyl) retinamide inhibition of 7,12-dimethyl-benz (a)-anthracene transformation of mammary cells in organ culture. Cancer Lett 16:239–245PubMedCrossRefGoogle Scholar
  322. 322.
    Moon RC, Mehta RG (1989) Chemoprevention of experimental carcinogenesis. Prev Med 18:576–591PubMedCrossRefGoogle Scholar
  323. 323.
    Pienta KJ, Nguyen NM, Lehr JE (1993) Treatment of prostate cancer in the rat with a synthetic retinoid fenretinide. Cancer Res 53:224–226PubMedGoogle Scholar
  324. 324.
    Dorr RT (1993) Interferon-a in malignant and viral diseases: a review. Drugs 45:177–211PubMedCrossRefGoogle Scholar
  325. 325.
    Wills RJ, Dennis S, Spiegel HE et al (1984) Interferon kinetics and adverse reactions after intravenous, intramuscular, and subcutaneous injection. Clin Pharmacol Ther 3:224–226Google Scholar
  326. 326.
    Gallo MA, Kaufman D (1997) Antagonistic and agonistic effects of tamoxifen: significance in human cancer. Semin Oncol 24[1 Suppl 1]:S1–71–S1–80PubMedGoogle Scholar
  327. 327.
    Wosikowski K, Kung W, Hasmonn M et al (1993) Inhibition of growth factor activated proliferation by anti-estrogens and effects on early gene expression by MCF-7 cells. Int J Cancer 53:290–297PubMedCrossRefGoogle Scholar
  328. 328.
    Jordan VC (1982) Metabolites of tamoxifen in animals and man: identification, pharmacology, and significance. Breast Cancer Res Treat 2:123–138PubMedCrossRefGoogle Scholar
  329. 329.
    Wogan GN (1997) Review of the toxicology of tamoxifen. Semin Oncol 24[1 Suppl l]:Sl–87–Sl–97Google Scholar
  330. 330.
    Gradishar WJ, Jordan VC (1997) Clinical potential of new antiestrogens. J Clin Oncol 15:840–852PubMedGoogle Scholar
  331. 331.
    Galili U (1983) Glucocorticoids induced cytolysis of human normal and malignant lymphocytes. J Steroid Biochem 19:483–490PubMedCrossRefGoogle Scholar
  332. 332.
    Yang-Yen HF, Chambard JC, Sun Y-L et al (1990) Transcriptional interference between C-jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1221PubMedCrossRefGoogle Scholar
  333. 333.
    Strum SB, McDermed JE, Scholz MC et al (1997) Anemia associated with androgen deprivation (AAAD) in prostate cancer (PC) patients (pts) receiving combination hormone blockade (CHB). Proc Am Soc Clin Oncol 16:345Google Scholar
  334. 334.
    Blackledge G (1993) Casodex-mechanisms of action and opportunities for usage. Cancer Suppl 72:3830–3833Google Scholar
  335. 335.
    Buzdar A, Jonat W, Howell A et al (1997) Significant improved survival with Arimidex (anastrozole) versus megestrol acetate in postmenopausal advanced breast cancer: updated results of two randomized trials. Proc Am Soc Clin Oncol 16:157Google Scholar
  336. 336.
    Greven KM, Corn BW (1997) Endometrial cancer. Curr Probl Cancer 21:65–127PubMedCrossRefGoogle Scholar
  337. 337.
    Gadducci A, Fanucchi A, Cosio S et al (1997) Hormone Replacement therapy and gynecological cancer. Anticancer Res 17:3793–3798PubMedGoogle Scholar
  338. 338.
    Cersosimo RJ, Carr D (1996) Prostate cancer: current and evolving strategies. Am J Health Syst Pharm 53:381–396PubMedGoogle Scholar
  339. 339.
    Vogel CL (1996) Hormonal approaches to breast cancer treatment and prevention: an overview. Semin Oncol 23 [Suppl 9]:2–9PubMedGoogle Scholar
  340. 340.
    Lucerno MA, McCloskey WW (1997) Alternatives to estrogen for the treatment of hot flushes. Ann Pharmacother 31:915–917Google Scholar
  341. 341.
    Asselin BL, Whitin JC, Coppola DJ et al (1993) Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol 11:1780–1786PubMedGoogle Scholar
  342. 342.
    Lyss AP (1996) Hormones and enzymes. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 459–478Google Scholar
  343. 343.
    Lazo JS, Sebti SM (1994) Bleomycin. Cancer Chemother Biol Response Modif 15:44–50PubMedGoogle Scholar
  344. 344.
    Dalgleish AG, Woods RL, Levi JA (1984) Bleomycin pulmonary toxicity: its relationship to renal dysfunction. Med Pediatr Oncol 12:313–317PubMedCrossRefGoogle Scholar
  345. 345.
    Dorr VJ, Morris D, Lorber M (1996) Chemotherapy programs. In: Perry MC (ed) The chemotherapy source book. Williams and Wilkins, Baltimore, pp 845–887Google Scholar
  346. 346.
    Baselga J, Pfister D, Cooper M et al (2000) Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18:904–914PubMedGoogle Scholar
  347. 347.
    Norton L, Slamon D, Leyland-Jones B et al (1999) Overall survival (OS) advantage to simultaneous chemotherapy (CRx) plus the humanized anti-HER2 monoclonal antibody Herceptin (H) in HER2-overexpressing (HER2+) metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 18:127AGoogle Scholar
  348. 348.
    Baselga J, Tripathy D, Mendelsohn J et al (1996) Phase II study of weekly intravenous recombinant humanized anti-HER2 monoclonal anti-braintumors. Cl in CancerRes 3:24 HER2/neu overexpressing metastatic breast cancer. J Clin Oncol 14:737-744Google Scholar
  349. 349.
    Woodburn JR, Barker AJ, Gibson KH et al (1997) ZD 1839, an epidermal growth factor tyrosine kinase inhibitor selected for clinical development. Proc Am Assoc Cancer Res 38:633Google Scholar
  350. 350.
    Kris MG, Herbst R, Rischin D et al (2000) Objective regression in non-small cell lung cancer patients treated in phase I trials of oral ZD 1839 (iressa), a selective tyrosine kinase inhibitor that block epidermal growth factor receptor (EGRF). Lung Cancer 29[Suppl 1]:72CrossRefGoogle Scholar
  351. 351.
    Kusaba H, Tamura T, Nakagawa K et al (2000) A phase I intermittent dose-escalation trial of ZD 1839 (iressa) in Japanese patients with solid malignant tumors. Clin Cancer Res 6:4543SGoogle Scholar
  352. 352.
    Druker BJ, Lydon NB (2000) Lessons learned from development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7PubMedCrossRefGoogle Scholar
  353. 353.
    Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the bcr-abl tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037PubMedCrossRefGoogle Scholar
  354. 354.
    Arceci R (2001) Novel therapeutic approaches in pediatric cancers. 2001 annual meeting summaries. American Soci-ety of Clinical Oncology, 12-15 May, San Francisco, California, USAGoogle Scholar
  355. 355.
    Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the bcr-abl tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042PubMedCrossRefGoogle Scholar
  356. 356.
    Yarchoan R, Little RF, Wyvill K et al (1998) A phase II study of oral thalidomide in patients with AIDS-related Kaposi’s sarcoma (KS). 12th World AIDS Conference, Geneva, Switzerland, 28 June-3 JulyGoogle Scholar
  357. 357.
    Hidalgo M, de Graffenried L (2001) Mammalian Target of Rapamycin (mTOR) interacting agents in cancer therapy. In: Perry MC (ed) American Society of Clinical Oncology Educational Book. Lippincott Williams and Wilkins, Baltimore, pp 426–434Google Scholar
  358. 358.
    Spiro TP, Wilson JKV, Haaga J et al (1996) O6-Benzylguanine and BCNU: establishing the biochemical modulatory dose in tumor tissue for O6-alkylguanine DNA alkyltransferase-directed DNA repair. Proc Am Assoc Clin Oncol 15:177Google Scholar
  359. 359.
    Hongeng S, Brent TP, Sanford RA et al (1997) O6-methylguanine-DNA methyltransferase protein levels in pediatrie brain tumors. Clin Cancer Res 3:2459–2463PubMedGoogle Scholar
  360. 360.
    Ewesuedo RB, Dolan ME (2001) O6-Alkylguanine-DNA alkyltransferase activity in pediatrie solid tumors. J Pediatr Hematol Oncol 23:A22Google Scholar
  361. 361.
    Jaeckle KA, Eyre HR, Townsend JJ et al (1998) Correlation of tumor guanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bischloroethylnitrosourea: a Southwest Oncology group Study. J Clin Oncol 16:3310–3315PubMedGoogle Scholar
  362. 362.
    Friedman H, Kokkinakis DM, Pluda J et al (1998) Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol 16:3570–3575PubMedGoogle Scholar
  363. 363.
    Spiro TP, Gerson SL, Hoppel CL et al (1998) O6-Benzylguanine totally depletes alkylguanine DNA alkyltransferase in tumor tissue: a phase I pharmacokinetic/pharmacodynamic study. Proc Am Assoc Clin Oncol 17:213Google Scholar
  364. 364.
    Dolan ME, Roy SK, Fasanmade AA et al (1998) O6-benzylguanine in humans: metabolic, pharmacokinetic, and pharmacodynamic findings. J Clin Oncol 16:1803–1810PubMedGoogle Scholar
  365. 365.
    Schilsky RL, Dolan ME, Bertucci D et al (2000) Phase I clinical and pharmacological study of O6-benzylguanine followed by carmustine in patients with advanced cancer. Clin Cancer Res 6:3025–3031PubMedGoogle Scholar
  366. 366.
    Carlson BA, Dubay MM, Sausville EA et al (1996) Flavopiridol induces Gl arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 56:2973–2978PubMedGoogle Scholar
  367. 367.
    Parker BW, Kaur G, Nieves-Niera W et al (1998) Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 15:458–465Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. B. Ewesuedo
  • M. J. Ratain

There are no affiliations available

Personalised recommendations